
ADOBE® FLASH® MEDIA
SERVER
CONFIGURATION AND ADMINISTRATION GUIDE

© 2007 Adobe Systems Incorporated. All rights reserved.
Adobe® Flash® Media Server Configuration and Administration Guide
If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished under license and may be used or
copied only in accordance with the terms of such license. Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the
content in this guide is protected under copyright law even if it is not distributed with software that includes an end user license agreement.
The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Adobe Systems Incorpo-
rated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide.
Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The unauthorized incorporation of such
material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain any permission required from the copyright owner.
Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual organization.
Adobe, the Adobe logo, Adobe AIR, ActionScript, Flash, Flash Lite, and Flex are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries.
Java is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries. Linux is the registered trademark of Linus Torvalds in the U.S.
and other countries. Red Hat is a trademark or registered trademark of Red Hat, Inc. in the United States and other countries. UNIX is a registered trademark of The Open Group
in the US and other countries. Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries. All other trademarks
are the property of their respective owners.
Portions include software under the following terms:

Sorenson™ Spark™ video compression and decompression technology licensed from Sorenson Media, Inc.

Licensee shall not use the MP3 compressed audio within the Software for real time broadcasting (terrestrial, satellite, cable or other media), or broadcasting via Internet or other
networks, such as but not limited to intranets, etc., or in pay-audio or audio on demand applications to any non-PC device (i.e., mobile phones or set-top boxes). Licensee
acknowledges that use of the Software for non-PC devices, as described herein, may require the payment of licensing royalties or other amounts to third parties who may hold
intellectual property rights related to the MP3 technology and that Adobe has not paid any royalties or other amounts on account of third party intellectual property rights for
such use. If Licensee requires an MP3 decoder for such non-PC use, Licensee is responsible for obtaining the necessary MP3 technology license.
Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.
Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, consisting of “Commercial Computer
Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R.
§12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and Commercial Computer Software Documentation are being
licensed to U.S. Government end users (a) only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and conditions
herein. Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S.
Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if appropriate, the provisions of Executive Order 11246, as amended,
Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations
at 41 CFR Parts 60-1 through 60-60, 60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.

iii

Contents

Chapter 1: Before you begin
Overview of Flash Media Server . 1

About the documentation . 1

Support . 2

Third-party resources . 2

Typographical conventions . 2

Chapter 2: Deploying the server
Deploying servers in a cluster . 3

Deploying edge servers . 3

Chapter 3: Configuring the server
Configuring adaptors, virtual hosts, and applications . 8

Working with configuration files . 11

Configuring performance features . 14

Configuring security features . 21

Performing general configuration tasks . 28

Configuring content storage . 31

Chapter 4: Using the Administration Console
Connecting to the Administration Console . 36

Inspecting applications . 38

Managing administrators . 45

Managing the server . 47

Chapter 5: Monitoring and Managing Log Files
Working with log files . 51

Access logs . 52

Application logs . 57

Diagnostic logs . 58

Configuration files for logging . 60

Chapter 6: Administering the server
Start and stop the server . 61

Checking server status . 62

Checking video files . 64

Clearing the edge server cache . 67

Managing the server on Linux . 68

Chapter 7: Using the Administration API
Working with the Administration API . 70

Method summary . 73

iv

Chapter 8: XML configuration files reference
Adaptor.xml file . 76

Application.xml file . 89

Logger.xml file . 129

Server.xml file . 138

Users.xml file . 172

Vhost.xml file . 176

Chapter 9: Diagnostic Log Messages

1

Chapter 1: Before you begin

Overview of Flash Media Server
Adobe® Flash® Media Server provides streaming media capabilities and a scripting engine that enable you to create
and deliver a wide range of interactive media applications. Use Flash Media Server to create traditional media
delivery applications, such as video on demand, live web event broadcasts, or MP3 streaming. You can also design
media applications like video blogging, video messaging, and multimedia chat environments. Flash Media Server is
part of Adobe’s complete solution for database connectivity, directory systems, presence services, and audio and
video delivery to Flash Player.

About the documentation
All documents are available in LiveDocs and PDF formats. Some documents are available for installation in the Flash
and Flex Help panels.

Flash Media Server includes the following documentation:

• Adobe Flash Media Server Installation Guide describes system requirements, server editions, and installation
profiles and explains how to install the server as either an origin or an edge server.

• Adobe Flash Media Server Technical Overview describes the server architecture including new features, the client-
server relationship, edge servers, and security features.

• Adobe Flash Media Server Configuration and Administration Guide (this manual) describes how to deploy,
configure, and tune the server, how to use the Administration Console to monitor the server, and how to use the
Administration application programming interface (API) to monitor and configure the server.

• Adobe Flash Media Server Developer Guide explains how to set up your development environment. It also
describes how to use the Flash authoring environment, the Flex authoring environment, and the Flash Media Server
API to create media applications.

• Adobe Flash Media Interactive Server Plug-in Developer Guide documents how to create Access, Authorization,
and File plug-ins in C++ that extend the capabilities of the server.

• ActionScript 3.0 Language and Components Reference documents the version 3.0 ActionScript™ you can use to
create client-side functionality. This document is part of the Flash or Flex documentation set, depending on which
authoring tool you use.

• Adobe Flash Media Server ActionScript 2.0 Language Reference documents the version 2.0 ActionScript you can
use to create client-side functionality. This document contains additional APIs and information about calling Flash
Media Server resources from a Flash Player client. You may also need to use the Flash ActionScript documentation
to create Flash Media Server client applications.

• Server-Side ActionScript Language Reference for Adobe Flash Media Server documents the Server-Side Action-
Script you can use to write scripts on the server. Server-Side ActionScript is JavaScript 1.5 with additional classes that
work only in the Flash Media Server host environment.

• Adobe Flash Media Server Administration API Reference documents the ActionScript API you can use to extend
the Flash Media Server Administration Console or to make your own administration and monitoring tools.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

2

• Adobe Flash Media Interactive Server Plug-in API Reference documents the C++ APIs you use to create plug-ins.

Support
You may want to explore these other sources of support for Flash Media Server:

• The Flash Media Server Support Center at www.adobe.com/go/flashmediaserver_support_en provides
TechNotes and up-to-date information about Flash Media Server.

• The Flash Media Server Developer Center at www.adobe.com/go/flashmediaserver_desdev_en provides tips
and samples for creating Flash Media Server applications.

• The Flash Media Server Online Forum at www.adobe.com/go/flashmediaserver_forum_en provides a place for
you to chat with other Flash Media Server users.

• For late-breaking information and a complete list of issues that are still outstanding, read the Flash Media Server
release notes at www.adobe.com/go/flashmediaserver_releasenotes_en.

Third-party resources
Adobe recommends several websites with links to third-party resources on Flash Media Server, including the
following:

• Adobe Flash community sites

• Adobe Flash books

• Object-oriented programming concepts

You can access these websites at www.adobe.com/go/flashmediaserver_resources_en.

Typographical conventions
The following typographical conventions are used in this manual:

• Code font indicates ActionScript statements, HTML tag and attribute names, and literal text used in examples.

• Italic indicates placeholder elements in code or paths. For example, attachAudio(source) means that you
should specify your own value for source; /settings/myPrinter/ means that you should specify your own location for
myPrinter.

• Directory paths are written with forward slashes (/). If you are running Flash Media Server on a Windows
operating system, replace the forward slashes with backslashes. When a path is specific to the Windows operating
system, backslashes (\) are used.

http://www.adobe.com/go/flashmediaserver_support_en
http://www.adobe.com/go/flashmediaserver_desdev_en
http://www.adobe.com/go/flashmediaserver_forum_en
http://www.adobe.com/go/flashmediaserver_releasenotes_en
http://www.adobe.com/go/flashmediaserver_resources_en

3

Chapter 2: Deploying the server

Deploying servers in a cluster

Workflow for deploying servers in a cluster
You can deploy multiple servers behind a load balancer to distribute the client load over multiple servers. Deploying
multiple servers enables you to scale an application for more clients and creates redundancy, which eliminates single
points of failure.

1. Install Flash Media Server and verify the installation on each computer.

Ensure that you deploy all servers on computers that meet the minimum system requirements. For information
about installing and verifying installation, see the Installation Guide.

Note: Use the same operating system (Linux or Windows) on all computers to avoid conflicts with filenames.
Filenames in Linux are case-sensitive; filenames in Windows are case-insensitive.

2. Configure a load balancer to see the servers hosting Flash Media Interactive Server or Flash Media
Streaming Server.

See Clustering multiple servers behind a load balancer.

Clustering multiple servers behind a load balancer
Add all the servers in the cluster to the pool (server farm) in the load balancer. The load balancer distributes traffic
among all the servers in the pool. Configure the load balancer to distribute the load in round-robin mode, and to
monitor over TCP port 1935.

If the server does not have an externally visible IP address, then for HTTP tunneling to work, you should enable
cookies when you deploy servers behind a load balancer. The load balancer checks the cookie and sends requests
with this cookie to the same server. Cookies can be enabled in the load balancer or in the Adaptor.xml configuration
file in the Adaptor/HTTPTunnel/SetCookie element.

Note: For tunneling connections, cookies are currently supported only on Flash Player 9.0.28 or later in Windows only.

For more information, see the following articles:

• www.adobe.com/go/learn_fms_redundancy_en

• www.adobe.com/go/learn_fms_clustering_en

• www.adobe.com/go/learn_fms_scalable_en

Deploying edge servers
Note: Only Flash Media Interactive Server can be configured as an edge server. Flash Media Streaming Server and Flash
Media Development Server cannot be configured as edge servers.

http://www.adobe.com/go/learn_fms_redundancy_en
http://www.adobe.com/go/learn_fms_clustering_en
http://www.adobe.com/go/learn_fms_scalable_en

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

4

The default configuration for Flash Media Server is that of an origin server. Typically, to deploy edge servers, you
would run Flash Media Server as an origin on one instance of the server, and deploy an edge server on another
instance.

While it is possible for development scenarios to run the server in hybrid mode—that is, to configure some virtual
hosts to run as an edge and another to run as an origin—this is not a typical production scenario.

Workflow for deploying edge servers

1. Install Flash Media Interactive Server and verify the installation on each computer.

Deploy all edge and origin servers on computers that meet the minimum system requirements. For information
about installing and verifying installation, see the Installation Guide.

Note: Use the same operating system (Linux or Windows) on all computers to avoid conflicts with filenames.
Filenames in Linux are case-sensitive; filenames in Windows are case-insensitive.

2. Configure an edge server and restart.

On the edge server, edit the Vhost.xml file of the virtual host you want to run as an edge server. For more infor-
mation, see Configure edge servers.

3. Verify that the edge server can communicate with the origin server.

The easiest way to verify is to create an explicit connection. Create a SWF file with an explicit connection to the
edge server and run the vod or live service. See Connect to an edge server.

4. If you’re installing multiple edge servers, copy the Vhost.xml file to the same directory on each edge server.

5. Verify that each edge server can communicate with the origin server.

6. Place the origin server and those edge servers nearest to it on the same subnet.

7. If you’re deploying more than one edge server, configure a load balancer.

Place the load balancer between the clients and the edges. Configure the load balancer to access the pool of edge
servers in round-robin mode and to monitor over TCP port 1935. Use the virtual IP (VIP) address of the pool
as the IP address in the RouteEntry element of each edge server’s Vhost.xml file; for detailed information on
how to configure the RouteEntry element, see the comments in the RouteEntry element of the default
Vhost.xml file installed with Flash Media Server, or see the description of the RouteEntry element in Configure
edge servers.

Configure edge servers
To configure Flash Media Interactive Server to run as an edge server, edit the Vhost.xml configuration file of the
virtual host you want to run as an edge server. The Vhost.xml file defines how the edge server connects clients to the
origin server. You can also configure some virtual hosts to run applications locally (as origins), while others run
applications remotely (as edges); this is called mixed mode or hybrid mode.

Note: For information about virtual hosts, see Configuring adaptors, virtual hosts, and applications. For information
about using configuration files, see Working with configuration files. For detailed information about XML elements in
the configuration files, see XML configuration files reference.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

5

Configure a virtual host to run as an edge server
1 Open the Vhost.xml file of the virtual host you want to configure and locate the following code (comments have
been removed):

<VirtualHost>
...
<Proxy>

<Mode>local</Mode>
<Anonymous>false</Anonymous>
<CacheDir enabled="false" useAppName="true"></CacheDir>
<LocalAddress></LocalAddress>
<RouteTable protocol="">

<RouteEntry></RouteEntry>
</RouteTable>
<EdgeAutoDiscovery>

<Enabled>false</Enabled>
<AllowOverride>true</AllowOverride>
<WaitTime>1000</WaitTime>

</EdgeAutoDiscovery>
</Proxy>

</VirtualHost>

Note: The default VHost.xml file is located in the RootInstall/conf/_defaultRoot_/_defaultVHost_ directory.

2 Edit the following XML elements, as needed.

Element Required/optional Description

Mode Required Enter local to configure Flash Media Interactive Server to run as an origin server. Enter
remote to configure Flash Media Interactive Server to run as an edge server.

Anonymous Optional A Boolean value specifying whether the edge server connection is implicit (true) or explicit
(false). The default value is false. For more information, see Connect to an edge server.

CacheDir Optional Enables or disables the caching of streams to disk, in addition to caching in memory, on an
edge server, and allows you to specify the cache location. There are two attributes: enabled
and appname.

To enable caching, set the enabled attribute to "true". When enabled, streams are
placed by default in the RootInstall/cache/appName directory. You can specify a different
cache location in this tag.

The useAppName attribute indicates whether to use the application name as the name of
the cache for the application.

Vod applications get significant performance gains when caching is enabled.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

6

3 Validate the XML and save the Vhost.xml file.

4 Restart Flash Media Interactive Server.

Connect to an edge server
There are two types of edge server connections: explicit and implicit (also called anonymous).

An explicit edge server prefixes its address to the origin server’s URL in the client NetConnection.connect() call.
For example, if your applications were running on fms.foo.com, instead of clients connecting to an application with
a connection string such as rtmp://fms.foo.com/app/inst, clients are directed through the edge, which prefixes
its protocol and hostname to the origin URL, as in the following:

rtmp://fmsedge.foo.com/?rtmp://fms.foo.com/app/inst

An implicit edge server does not change or modify the origin server’s URL in the client NetConnection.connect()
call. The identity (the IP address and port number) of the implicit edge is hidden from the application developer.

LocalAddres
s

Optional Specifies the local IP address to which to bind a proxy's outgoing connection (the proxy’s
loopback address). This element allows the administrator to control network traffic by
isolating incoming and outgoing traffic to separate network interfaces.

RouteTable Optional; create a
routing table when it
is not necessary or
desirable for applica-
tion developers to
see the origin server
URL, or when you
want to use implicit
connections.

Specifies, in each RouteEntry element, how to route connections from the origin to the
edge. There is one attribute, protocol, that indicates the protocol of the outgoing
connection. Set this attribute to either "rtmp" or "rtmps".

To override the RouteTable protocol for a specific RouteEntry element, add a protocol
attribute to the RouteEntry element you want to change.

RouteEntry Optional Each RouteEntry element maps a host/port pair to a different host/port pair:

host1:port1;host2:port2

Connections to host1:port1 are routed to host2:port2. Typically, host1:port1
is your origin server and host2:port2 is your edge server. For example:

<RouteEntry>edge:1935;origin:80</RouteEntry>

routes connections destined for host "edge" on port 1935 to host "origin" on port 80.

You can specify a wildcard character (*) for any host or port. For example:

<RouteEntry>*:*;origin:1935</RouteEntry>

routes connections destined for any host on any port to host "origin" on port 1935.

You can also specify a wildcard for the host/port to which connections are being routed. For
example:

<RouteEntry>*:*;*:80</RouteEntry>

routes connections destined for any host on any port to the same host on port 80.

To reject connections, you can specify that a host/port combination be routed to null:

<RouteEntry>edge:80;null</RouteEntry>

The RouteEntry element has a protocol attribute. This attribute overrides the
RouteTable protocol for a specific RouteEntry element. For example, RouteTable may
have one RouteEntry element that specifies an encrypted outgoing RTMPS connection,
and another RouteEntry tag that specifies the regular RTMP connection. If a protocol is
not specified, the outgoing connection uses the same protocol as the incoming connection.

Element Required/optional Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

7

Create an explicit connection
❖ Use the following syntax in a client-side NetConnection.connect() call to make an explicit connection to an
edge server:

rtmp://edge/?rtmp://origin/app

A question mark (?) separates the edge’s prefix from the main URL. The prefix contains only the protocol, hostname,
and optionally the port number. The prefix must always end with a trailing slash.

Create an implicit connection
1 In the Vhost.xml configuration file, set the Proxy/Anonymous element to true.

Note: Restart the server after changing the Vhost.xml file.

2 In the Vhost.xml file, create a routing table in the RouteTable element; for more information, see the comments
about RouteEntry tags in the Vhost.xml file installed with Flash Media Server.

3 Use the following syntax in a client-side NetConnection.connect() call to make an implicit connection to an
edge server:

rtmp://origin/app/appinstance

Connect edge servers in a chain
You can chain together any number of edges when you make connections to the origin server. Use the following

syntax to chain two explicit edges to direct connection requests to the origin server:

rtmp://edge1/?rtmp://edge2/?rtmp://origin/app/inst

As the connection moves through each edge in the chain, the server consumes the first token in the string. For
example, after making the connection to edge1, the connection string changes to:

rtmp://edge2/?rtmp://origin/app/inst

Note: You can specify the RTMPT protocol only for the edges, not for the origin.

When you use URL decoration to chain edges, Flash Player 7 and earlier versions may have problems with shared
objects because of the embedded question mark (?) character in the URL. Call the following function to encode or

escape the question marks from the URL before passing the URL to the shared object:

function escapeURI(uri) {
index = uri.indexOf('?');
if (index == -1) return uri;
prefix = uri.substring(0, index);
uri = uri.substring(index);
return prefix += escape(uri);

}

8

Chapter 3: Configuring the server

Configuring adaptors, virtual hosts, and applications

Adaptors and virtual hosts
The server is divided into hierarchical levels: server, adaptor, virtual host (also called vhost), and application. The
server is at the top level and contains one or more adaptors. Each adaptor contains one or more virtual hosts. Each
virtual host hosts one or more applications. Each application has one or more instances. You can add adaptors and
virtual hosts to organize the server for hosting multiple applications and sites.

If you’re hosting multiple websites on a server, use virtual hosts to give customers their own root folders. For
example, you could use two virtual hosts to host www.test.com and www.example.com on the same server.

You can assign an IP address or a port number to an adaptor, but not to a virtual host. For this reason, use adaptors
to organize virtual hosts by IP address or port number. For example, if a virtual host needs its own IP address to
configure SSL, assign it to its own adaptor.

You can also configure one virtual host to run as an edge server and one to run as an origin server. This is called
running the server in hybrid mode.

Applications
Application files (SWF, HTML, FLA) must be stored in an applications folder. The applications folder registers appli-
cations with the server.

By default, the location of the applications folder is RootInstall/applications. For example, the live and vod applica-
tions that come with Flash Media Server are installed at RootInstall/applications/live and RootInstall/applica-
tions/vod, respectively. You can change the default location of the applications folder and of the live and vod
applications in particular; see Setting the location of application files.

You create instances of applications by creating subfolders within the application’s folder. For example, to create an
instance of the vod application called room1, create a RootInstall/applications/vod/room1 folder.

Configuration folder structure
Each of these levels—server, adaptor, virtual host, application, and application instances—has distinct configuration
settings stored in XML files in the RootInstall/conf directory: Server.xml, Adaptor.xml, Vhost.xml, and Appli-
cation.xml. There are also configuration files for information about administrators and logging: Users.xml and
Logger.xml. The most important configuration parameters have been pulled out to the fms.ini file, which enables
you to use one file to configure the server.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

9

Default structure of the server’s configuration (conf) directory

Edit any of these XML files in a text or XML editor and restart the server for the changes to take effect. If you modify
Users.xml or fms.ini, you also must restart Flash Media Administration Server. For more information, see Working
with configuration files.

The following rules define the conf directory structure:

• The root configuration folder is RootInstall/conf. You cannot remove or modify the name of this directory. The
server must have a Server.xml file, a Logger.xml file, and a Users.xml file in the conf directory.

• The server has one initialization file, fms.ini, in the RootInstall/conf directory. This file contains commonly used
settings, including the administrator user name and password and the settings you chose during installation.

• The default adaptor’s root directory is RootInstall/conf/_defaultRoot_. You cannot remove or modify the name
of this directory. Each adaptor must have an Adaptor.xml file in its root directory.

• The default virtual host’s root directory is RootInstall/conf/_defaultRoot_/_defaultVHost_. You cannot remove
or modify the name of this directory. Each virtual host must have a Vhost.xml file in its root directory. Each adaptor
must have a default virtual host.

• Virtual host directories may also contain an Application.xml file that serves as a default to all applications in that
virtual host and a Users.xml file that contains information about administrators of that virtual host.

• You may place an Application.xml file in an application’s registered directory to create an application-specific
configuration. For more information about registered application directories, see the Developer Guide.

Add an adaptor
1 Create a new directory with the name of the adaptor in the RootInstall/conf folder; for example, RootIn-
stall/conf/adaptor2.

2 In the adaptor directory, create or paste a copy of the _defaultVHost_ directory and an Adaptor.xml file.

Each adaptor directory must contain a _defaultVHost_ directory and an Adaptor.xml file.

3 In the _defaultVHost_ directory, create or paste a copy of an Application.xml file and a Vhost.xml file.

4 In the Adaptor.xml file in the adaptor directory, add a HostPort element to listen on a new port for this adaptor:
<HostPort name="edge2" ctl_channel=":19351">:1936</HostPort>

conf

Server.xml

defaultRoot

Adaptor.xml

defaultVHost

Application.xml

Logger.xml

Users.xml

fms.ini

Vhost.xml

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

10

The name attribute must be unique on the server. The control channel (ctl_channel) attribute and the
HostPort value specify the ports to which an IP address should bind. If an IP address is not specified, the
adaptor can listen on all available interfaces. The server uses the control channel (ctl_channel) attribute inter-
nally to communicate between server processes (adding a HostPort element creates a new fmsedge process).

The server uses the HostPort value to listen for clients—no two adaptors can listen on the same port, either
internally or externally, unless they use different IP addresses. If a host has multiple IP addresses, multiple
adaptors can listen on port 1935. In addition, the control channels of two adaptors must be different, or they
cannot interoperate. Ensure that the control channels on which separate adaptors listen are different from each
other, as in the following example:

<HostPort name=”edge1” ctl_channel=”:19350”>xx.xx.xx.xx:1935</HostPort>
<HostPort name=”edge2” ctl_channel=”:19351”>yy.yy.yy.yy:1935</HostPort>

5 Restart the server.

6 To log in to the Administration Console on the new adaptor, use the syntax adaptorname/username in the
Username box; for example, adaptor2/admin.

For information about logging in to the Administration Console, see Connecting to the Administration Console.

Administrators are defined in the UserList section of the Users.xml file. Administrators are either server-level
users (similar to a root user) or virtual host-level users. If you log in to an adaptor other than the default adaptor,
you are considered a virtual host administrator and don’t have privileges to manage the server or users.

The conf directory with an additional adaptor called adaptor2.

Add a virtual host
1 Create a folder with the name of the virtual host in an adaptor folder, for example, RootIn-
stall/conf/_defaultRoot_/www.example.com.

2 Copy an Application.xml file, a Vhost.xml file, and a Users.xml file to the new virtual host folder. (The Users.xml
file is required only if you are defining administrators for this virtual host.)

conf

Server.xml

defaultRoot

Adaptor.xml

defaultVHost

Application.xml

Logger.xml

Users.xml

fms.ini

Vhost.xml

Users.xml

defaultVHost

Application.xml

Vhost.xml

Users.xml

adaptor2

Adaptor.xml

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

11

3 In the Vhost.xml file, specify an application directory in the AppsDir element, for example:

<AppsDir>C:\www.example.com<\AppsDir>

Note: It is possible to use the same applications directory for multiple virtual hosts, but it causes namespace conflicts
and is not recommended.

4 Validate the XML and save the Vhost.xml file.

5 Restart the server.

Note: You can call the startVHost() Administration API or log in to the Administration Console without restarting
the server.

6 Log in to the Administration Console.

For information about logging in to the Administration Console, see Connecting to the Administration Console.

7 Connect to the new virtual host by specifying the virtual host name, for example, www.example.com, in the
Server name field.

8 Connect a test application to the new virtual host to make sure it works.

The conf directory with an additional virtual host called www.example.com.

Working with configuration files

Editing configuration files
Note: For information about configuration file names, locations, and hierarchy, see Configuration folder structure.

To edit a configuration file, open it in a text editor, modify and save it, and restart the server. If you modify Users.xml,
you also must restart Flash Media Administration Server.

It’s a good idea to check that the XML is valid after editing an XML configuration file.

conf

Server.xml

defaultRoot

Adaptor.xml

defaultVHost

Application.xml

Logger.xml

Users.xml

fms.ini

Vhost.xml

Users.xml

www.example.com

Application.xml

Vhost.xml

Users.xml

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

12

Edit the fms.ini file
1 Open RootInstall/conf/fms.ini in a text editor.

2 Save a copy to another location as a backup.

3 Enter a new value for the SERVER.ADMIN_PASSWORD parameter.

4 Save the file and restart the server.

5 Open the Administration Console and log in with your new password.

Using symbols in configuration files
To simplify configuration, you can use symbols as values for XML elements in configuration files. Create a file named
substitution.xml in the RootInstall/conf folder that maps the symbols to strings that the server substitutes when it
reads the configuration files. After you’ve set up a map file, future updates are faster: you can edit the map file instead
of editing each configuration file.

The installer defines a few mappings during the installation process and stores them in the fms.ini file. When the
server starts, it looks for the fms.ini file and the substitution.xml file in the RootInstall/conf directory. You can also
create additional map files and reference them from the substitution.xml file.

The server has two predefined symbols, ROOT and CONF, that are always available. The ROOT symbol is mapped to the
location of the FMSMaster.exe file, and the CONF symbol is mapped to the location of the Server.xml file.

The server builds the symbol map in the following order:

1 The predefined symbols ROOT and CONF are evaluated.

2 The fms.ini file is evaluated.

3 If the substitution.xml file exists, the server looks for the Symbols tag and processes the child tags in the order
in which they appear.

4 The server processes the additional map files in the order in which they appear (in KeyValueFile elements in
the substitution.xml file).

5 Symbols defined in external map files are processed in the order in which they appear in each file.

Create a substitution.xml file:
1 Create a new XML file and save it in the RootInstall/conf folder as substitution.xml.

2 Enter the following XML structure:

<Root>
<Symbols>

<SymbolName>StringToMapTo</SymbolName>
</Symbols>

</Root>

Add a SymbolName element for each symbol you want to create.

3 For example, this substitution.xml file maps the symbol TESTUSERNAME to the value janedoe:

<Root>
<Symbols>

<TESTUSERNAME>janedoe</TESTUSERNAME>
</Symbols>

</Root>

4 Open the RootInstall/conf/Users.xml file in a text editor.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

13

5 Locate the line <User name="${SERVER.ADMIN_USERNAME}"> and replace the symbol
SERVER.ADMIN_USERNAME with the symbol TESTUSERNAME.

When the server reads the XML file, it substitutes the value from the substitution.xml file as follows:

<User name="janedoe">

Note: Because this symbol is used as an attribute, it is surrounded by quotation marks. If the symbol were used as
a regular value, it would not be surrounded by quotation marks.

6 Restart the Administration Server.

Note: If you change the Users.xml file, you must restart the Administration Server. If you change any other XML config-
uration file, you must restart the server.

Creating additional map files
You can specify all of your text substitution mappings under the Symbols tag in substitution.xml. However, you can
also create additional map files. To do this, create one or more KeyValueFile elements in the substitution.xml file.
Each element can hold the location of one external file.

For example, the following references the file C:\testfiles\mySymbols.txt:

<Root>
<KeyValueFile>C:\testfiles\mySymbols.txt</KeyValueFile>

</Root>

These external files are not in XML format. They simply contain a collection of symbol-value pairs, where each pair
appears on a separate line and takes the following form:

symbol=value

The following example shows three symbol-value pairs:

USER_NAME=foo
USER_PSWD = bar
HELLO= "world and worlds"

Place comments on separate lines that begin with a number sign (#). Do not place comments on the same line as a
symbol definition.

The first equal sign (=) in a line is considered the delimiter that separates the symbol and the value. The server trims
leading or trailing white space from both the symbol and the value, but no white space within double quotation
marks.

Using environment variables
To refer to an environment variable in one of the XML configuration files, use the name of the environment variable
within percent (%) characters. The % characters indicate to the server that the symbol refers to an environment
variable, and not to a user-defined string.

The syntax for specifying an environment variable as a symbol is ${%ENV_VAR_NAME%}.

For example, the server maps the following symbol to the COMPUTERNAME variable:

${%COMPUTERNAME%}

When you use an environment variable, you don’t have to define it in the substitution.xml file.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

14

Configuring performance features

Configure the recorded media cache
In some scenarios, you might want to increase the size of the recorded media cache. When a stream is requested from
the server, segments of the stream are stored in a memory cache on the server. As long as the cache has not reached
capacity, the server places segments in the cache.

Each time a stream attempts to access a segment, the server checks the cache. If the segment is available, the server
gives the stream a reference to the segment for playback. If the segment is not available, the server retrieves the
segment from its source, inserts it into the cache, and returns a reference to that segment to the stream.

When the cache is full, the server removes unused segments, starting with the least recently used. After removing all
unused segments, if there still isn’t enough room for a new segment, the server notifies the client that the stream is
not available and makes an entry in the core log file.

If you have cache-full events in the core log file, increase the size of the cache, or limit the number of streams playing.
For more information about the core log file, see Monitoring and Managing Log Files.

1 Open the RootInstall/conf/fms.ini file.

2 Edit the SERVER.FLVCACHE_MAXSIZE parameter.

This is the maximum size of the cache, in megabytes. The default value is 500. This value shares memory with
the running process and has a limit of 2 GB in Windows and 3 GB in Linux.

The size of the cache limits the number of unique streams the server can publish. To increase the probability that
a requested stream will be located in the recorded media cache, increase the value of
SERVER.FLVCACHE_MAXSIZE. To decrease the amount of memory the server process uses, decrease the value of
SERVER.FLVCACHE_MAXSIZE. While a large cache size is useful, Adobe recommends that you ensure that your
total system memory usage does not exceed the process limit of your OS. Consider memory limits and desired
memory and stream performance when utilizing the memory cache.

Note: Cache settings have no effect on live streams, as live streams do not need or utilize the cache.

3 Restart the server.

Configure the size of stream chunks
In some scenarios, you might want to change the size of stream chunks. Stream content breaks into chunks as it’s
written to the network. You can specify the size of an RTMP chunk. Larger values reduce CPU usage, but also
commit to larger writes that can delay other content on lower bandwidth connections. The larger the content size
and the higher the bandwidth of the receiving connection, the more benefit is gained from larger chunk sizes.

1 Open the Application.xml file.

2 In the Client element, set the OutChunkSize element to a value between 128 and 65536 bytes. The default value
is 4096 bytes.

For more information, see Application.xml file.

3 Restart the server.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

15

Configure the size of stream chunks for the vod service
In some scenarios, you might want to change the size of stream chunks. Stream content breaks into chunks as it’s
written to the network. You can specify the size of an RTMP chunk for the vod service. Larger values reduce CPU
usage, but also commit to larger writes that can delay other content on lower bandwidth connections.

1 Open the Application.xml file for the vod application.

2 In the Client element, set the OutChunkSize element to a value between 128 and 65536 bytes. The default value
is 4096 bytes.

For more information, see the Application.xml file.

3 Restart the server.

Send aggregate messages
In some scenarios, you might want to enable the server to aggregate messages before sending them. An application
can be configured to deliver aggregate messages to clients running on Flash Player 9.0.60.0 and above. When this
setting is disabled, the server breaks up aggregate messages into individual messages before delivering them to
clients. Sending aggregate messages reduces CPU usage and increases server capacity.

1 Open the Application.xml file.

2 Locate the following XML:

<Client>
...
<AggregateMessages enabled="true"></AggregateMessages>

<Client>

3 Make sure that the enabled attribute to true (the default).

4 Validate the XML and save the Application.xml file.

5 Restart the server.

Combine audio samples
In some scenarios, to handle more connections while broadcasting a live stream, combine audio samples.

Important: Do not combine audio samples if you are also using the live aggregation message feature.

1 Open the RootInstall/conf/fms.ini file.

2 Edit the following parameters:

• APP.SUBSCRIBERS: If there are more than this number of subscribers to a stream, audio samples are
combined. The default value is 8. To increase live streaming capacity, set this value to 1.

• APP.COMBINESAMPLES_LOCPU: If the CPU is lower than this value, audio samples are not combined. The
default value is 60. To increase live streaming capacity, set this value to 1.

• APP.COMBINESAMPLES_HICPU: If the CPU is higher than this value, audio samples are not combined. The
default value is 80. To increase live streaming capacity, set this value to 1.

• APP.COMBINESAMPLES_MAXSAMPLES: Combine this many samples into one message. The default value is
4. To increase live streaming capacity, set this value to 8.

3 Restart the server.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

16

Limit connection requests
In some cases, a high connection rate to the server can negatively impact the experience of users already connected
to the server.

1 Locate the following code in the Server.xml configuration file:

<Root>
<Server>

...
<Protocol>

<RTMP>
<Edge>

<MaxConnectionRate>100</MaxConnectionRate>

2 Validate the XML and save the XML file.

3 Restart the server.

Close idle connections
Sometimes users abandon their connections to an application. To reclaim these resources for new and active clients,
the server can close the idle clients.

A client is active when it is sending (e.g., publishing) or receiving (e.g., subscribing to) data. Elements in the
Server.xml, Vhost.xml, and Application.xml configuration files specify how often the server should check for idle
clients. When a client has been idle longer than the maximum idle time (10 minutes, by default), the server sends a
status message to the NetConnection object (the client) with the code property set to
NetConnection.Connect.Idle followed by NetConnection.Connect.Closed. The server closes the client
connection to the server and writes an x-status code of 432 in the access log. The server also writes a message such
as “Client x has been idle for y seconds” in the core and event logs.

To close idle connections, you must enable the feature in the Server.xml file. Once you enable the feature in the
Server.xml file, you can disable the feature for individual virtual hosts or individual applications in the Vhost.xml
files and Application.xml files. The values defined in the Server.xml configuration file apply to all clients connected
to the server, unless the values are defined in the Vhost.xml file (the Vhost.xml values override the Server.xml
values). The values defined in the Application.xml file override the values defined in the Vhost.xml file.

Enable closing idle connections
1 Locate the following code in the Server.xml file:

<AutoCloseIdleClients enable="false">
<CheckInterval>60</CheckInterval>

Element Description Impact

MaxConnectionRate The maximum number of incoming connections per second the
server accepts, per listener. Listeners are defined in the HostPort
element in the Adaptor.xml file. Each port the server is configured to
listen on represents a listener. You can set a fractional maximum
connection rate, such as 12.5. A value of 0 or -1 disables this feature.

The value of this element is a global setting for all listeners. If the
element is set to 10 connections per second, each listener has a limit
of 10 connections per second. If there are three listeners and the
MaxConnectionRate is set to 10, the server imposes a maximum
total combined rate of 30 connections per second.

Connections requested at a rate above
this value remain in the TCP/IP socket
queue and are silently discarded by the
operating system whenever the queue
becomes too long.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

17

<MaxIdleTime>600</MaxIdleTime>
</AutoCloseIdleClients>

2 Edit the following elements.

Configure settings for virtual hosts
You can disable this feature for a virtual host or specify a different maximum idle time for a virtual host in the
Vhost.xml file.

1 Locate the following code in the Vhost.xml file and remove the comments:
<VirtualHost>

<AutoCloseIdleClients enable="false">
<MaxIdleTime>600</MaxIdleTime>

</AutoCloseIdleClients>
</VirtualHost>

2 Edit the following elements.

3 Restart the server.

Configure settings for applications
You can disable this feature for an application or specify a different maximum idle time for an application in the
Application.xml file.

1 Locate the following code in the Application.xml file and remove the comments:

<VirtualHost>
<AutoCloseIdleClients enable="false">

<MaxIdleTime>600</MaxIdleTime>

Element Description Impact

AutoCloseIdleClients Set the enable attribute to true to close idle
clients. If the enable attribute is omitted or not
set to true, the feature is disabled. The default
value is false.

CheckInterval Specifies the interval, in seconds, at which the
server checks for active client connections. The
default interval is 60 seconds.

A client is disconnected the first time the server checks
for idle connections if the client has exceeded the
MaxIdleTime value. A shorter interval results in more
reliable disconnection times, but can also result in
decreased server performance.

MaxIdleTime Specifies the maximum idle time allowed, in
seconds, before a client is disconnected. If this
element is 0 or less, the default idle time is used.
The default idle time is 600 seconds (10 minutes).

A low value may cause unneeded disconnections.
When you configure this element, consider the type of
applications running on the server. For example, if you
have an application allowing users to watch short video
clips, a user might leave the window to idle out.

Element Description

AutoCloseIdleClients Disable this feature for an individual virtual host by setting the enable attribute to false. If this
element is disabled in Server.xml, the feature is disabled for all virtual hosts, even if you specify true
in the Vhost.xml file.

MaxIdleTime Specifies the maximum idle time allowed, in seconds, before a client is disconnected. The default idle
time is 600 seconds (10 minutes). You can set a different value for each virtual host.

If no value is set for this element, the server uses the value set in the Server.xml. file.

The value of the MaxIdleTime element in the Vhost.xml file overrides the value of the
MaxIdleTime element in the Server.xml file.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

18

</AutoCloseIdleClients>
</VirtualHost>

2 Edit the following elements.

3 Restart the server.

Configure how applications are assigned to server processes
Note: This section is only applicable to Flash Media Interactive Server and Flash Media Development Server. Flash
Media Streaming Server doesn’t support multiple processes.

In some scenarios, you might want to change how applications are assigned to server processes. When you start the
server, you are starting a process called FMSMaster.exe (Windows) or fmsmaster (Linux). Application instances run
in processes called FMSCore.exe (Windows) and fmscore (Linux). The master process is a monitor that starts core
processes when necessary. There can be only one master process running at a time, but there can be many core
processes running at a time.

Note: The number of core processes you can run is limited by system memory. However, you shouldn’t run more than
100, and you probably won’t need more than 20.

You can configure how applications are assigned to server processes in the Process section of the Application.xml
configuration file. Settings in an Application.xml file in a virtual host folder (for example, RootIn-
stall/conf/_defaultRoot_/_defaultVHost_/Application.xml) apply to all the applications running in that virtual host.
Settings in an Application.xml file in an application’s folder (for example, RootInstall/applications/myApp/Appli-
cation.xml) apply only to that application. The following is the XML structure:

<Application>
<Process>

<Scope>vhost</Scope>
<Distribute numprocs="3"></Distribute>
<LifeTime>

<RollOver></RollOver>
<MaxCores></MaxCores>

</LifeTime>
<MaxFailures>2</MaxFailures>
<RecoveryTime>300</RecoveryTime>

</Process>
...

</Application>

Element Description

AutoCloseIdleClients Disable this feature for an individual application by setting the enable attribute to false. If this
element is disabled in Server.xml, the feature is disabled for all applications, even if you specify true
in the Application.xml file.

MaxIdleTime Specifies the maximum idle time allowed, in seconds, before a client is disconnected. The default idle
time is 600 seconds (10 minutes). You can set a different value for each application.

If no value is set for this element, the server uses the value set in the Vhost.xml. file. If no value is set
for this element in the Vhost.xml file, the server uses the value in the Server.xml file.

The value of the MaxIdleTime element in the Vhost.xml file overrides the value of the
MaxIdleTime element in the Server.xml file.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

19

Configure a process scope
The Scope tag specifies at which level application instances are assigned to core processes. An application

instance can run by itself in a process or it can run in a process with other instances. Enter one of the following values
for the Scope element.

Distribute a process scope among multiple core processes
The four process scopes don’t provide a good distribution for all scenarios. For example, if you have one application
and want to run 25 instances of that application, you could either distribute those instances to one core process
(<Scope>app</Scope>) or three core processes (<Scope>inst</Scope>). In this scenario, you could set Scope to
app and Distribute numprocs to 3 to distribute the application instances among three core processes.

Note: There is no limit to the value of the numprocs attribute, but you should never need more than 40. Depending on
available RAM, a number between 3 and 11 is realistic for most cases. Adobe recommends using prime number values
because they result in a more even distribution of connections to processes.

Scopes have an enclosing relationship with a strict ordering: adaptors contain virtual hosts, which contain applica-
tions, which contain instances, which contain clients. The value of the Distribute tag must be a scope that is lower
in order than the value in the Scope tag. In other words, if the value of Scope is adaptor, the value of Distribute
can be vhosts, apps, insts, or clients. If the value of Scope is app, the value of Distribute can be insts or
clients. By default, the server uses the value immediately lower than the one specified in the Scope tag.

1 Set the scope value.

2 Set the numprocs value to a value higher than 1. The default value of numprocs is 3, which means that the default
behavior is to distribute application instances to three core processes.

3 Enter one of the following values for the Distribute element.

Value Description

adaptor All application instances in an adaptor run together in a process.

vhost All application instances in a virtual host run together in a process. This is the default value.

app All instances of a single application run together in a process.

inst Each application instance runs in its own process. This provides the best application isolation and uses
the most system resources.

Running every instance in its own process can create many processes. You can set the Distribute
numprocs attribute to a value greater than 1 to distribute instances across that number of processes.

Value Description

vhosts All instances of applications in a virtual host run together in a process.

apps All instances of an application run together in a process.

insts Each application instance runs in its own process. This is the default value. If you choose this value, you
must also set the Distribute numprocs attribute to a value greater than 1.

clients Each client connection runs in its own process.

Use this value for stateless applications—applications that don’t require clients to interact with other
clients and don’t have clients accessing live streams. Most vod (video on demand) applications are state-
less because each client plays content independently of all other clients. Chat and gaming applications
are not stateless because all clients share the application state. For example, if a shared chat application
were set to client, the messages wouldn't reach everyone in the chat because they’d be split into
separate processes.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

20

Configure the number of core processes and how long each process runs
Specify the number of core processes in the MaxCores tag (the maximum number of core processes that can exist

concurrently) and the number of seconds that a core process can run in the RollOver tag. When a core process
reaches the limit, any new connections roll over to a new core process.

The following diagram depicts the way in which the server rolls over processes. In the XML, the rollover time is set
to 3600 seconds (1 hour), indicating that every hour a new process should start, and the maximum core processes
value is set to 3, indicating that the maximum number of processes at any given time is 3:

<Process>
<Scope>app</Scope>
<LifeTime>

<RollOver>3600</RollOver>
<MaxCores>3</MaxCores>

</LifeTime>
...

A. Client connections B. Process 1 starts C. Process 2 starts D. Process 3 starts E. Process 4 starts; Process 1 ends, because the maximum core
processes limit was reached

When each process starts, it accepts new connections until the next process starts: that is, when process 1 starts, it
accepts new client connections to the application until process 2 starts; process 2 then accepts new client connections
until process 3 starts; and so on.

Note that the duration of process 1 might or might not be the full duration specified by the rollover value, because
rollover values are calibrated to the real clock time. The duration of process 1 is partially determined by the current
time when process 1 starts. For example, as shown in the diagram, when process 1 starts, the current time is 12:20,
so the duration of process 1 is only 40 minutes (because it is 40 minutes until the beginning of the hour in real time).
The duration of the first process is determined by the clock time; subsequent processes have a duration equal to the
specified rollover time.

To disable this feature, set RollOver to 0. This feature is disabled by default.

Note: If you have multiple VHosts with Process/Scope set to adaptor, you must set an identical RollOver value for
each VHost.

In stateless applications, such as vod applications, old core processes continue to serve earlier connections. In this
case, you can specify a value in the MaxCores tag to limit the maximum number of core processes that can run simul-
taneously. If the application is not stateless, the server ignores any value you assign to MaxCores and sets it to 1. This
ensures that an application instance is not split across multiple processes, but clients are disconnected periodically.
To disable this feature, set MaxCores to 0. This feature is disabled by default.

Note: An application is considered stateless if you configure it to distribute clients over multiple processes. To do this, set
the Distribute numprocs attribute to a value greater than 1, then set the Distribute tag to clients or set the Scope tag
to inst.

12:00 1:00 2:00 3:00 4:00 5:0012:20

A EDB C

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

21

Check for process failures
1 Enter a value in the MaxFailures tag to specify the maximum number of process failures allowed before a core
process is disabled. The default value is 2.

2 Once disabled, the a master process will not launch a core process until a minimum recovery time elapses. Enter
a value in the RecoveryTime tag to specify the minimum recovery time contained elements; set the tag to 0 to disable
checking for process failures.

Use this feature to guard against a behavior in which a faulty core process can consume the CPU by being repeatedly
launched very quickly.

Note: Applications that are loaded using the Administration API (including applications loaded using the Adminis-
tration Console) are not checked for process failures.

Configuring security features

Restrict which domains can connect to a virtual host
If desired, you can restrict which domains are allowed to connect to a virtual host. By default, connections are
allowed from all domains.

1 Open the RootInstall/conf/fms.ini file.

2 Set the VHOST.ALLOW parameter to a comma-delimited list of domains that are allowed to connect to the server.
The default value is all.

If a value is set, only the domains listed are accepted. For example, VHOST.ALLOW = example.com,
example2.com allows connections from the example.com and example2.com domains. To allow localhost
connections, specify localhost. For more information, see Vhost.xml file.

3 Restart the server.

Verify SWF files
If desired, you can configure the server to verify client SWF files before allowing them to connect to an application.
Verifying SWF files prevents someone from creating their own SWF files that attempt to stream your resources.

Note: SWF files connecting to Flash Media Administration Server cannot be verified.

In the Application.xml file, specify one or more folders on the server to hold a copy of an application’s client SWF
file (this is the verifying SWF file). When the client SWF file connects to the server, the server verifies it. If the SWF
file is verified, it is allowed to connect to the application. You can also configure the length of time the verification
data is held in the server’s cache and how often the server checks for updated verifying SWF files.

Note: If you’re deploying an Adobe AIR application, copy the SWF file you compiled into the AIR package to the server.

Configure SWF verification
1 Locate the following section of the Application.xml file:

<Application>
...
<SWFVerification enabled="false">

<SWFFolder></SWFFolder>
<MinGoodVersion></MinGoodVersion>
<UserAgentExceptions>

<Exception to="" from=""/>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

22

</UserAgentExceptions>
<Cache>

<TTL></TTL>
<UpdateInterval></UpdateInterval>

</Cache>
</SWFVerification>

</Application>

2 Edit the following elements.

Create verification exceptions
Add Exception elements to the UserAgentExceptions section of the Application.xml file.

Certain applications—for example, Adobe Flash Media Encoder—don’t support the form of SWF verification used
by the server. You can add one or more exceptions to the SWF verification rules that allow specified user agents, such
as Flash Media Encoder, to bypass SWF verification, as in the following:

<SWFVerification enabled="true">
...
<UserAgentExceptions>

<Exception to="FME/1.0" from="FME/1.0"/>
</UserAgentExceptions>

</SWFVerification>

Verify administrative clients
In the Root/Server/SWFVerification/SWFFolder tag in the Server.xml file, you can specify folders that hold

SWF files to verify SWF files trying to connect to any application or instance on the server. You can also specify the
cache values for these SWF files.

Element Attribute Description

SWFVerification enabled Set the enabled attribute to "true" or "false" to turn this feature on or off. The default value
is "false".

SWFFolder None. A single folder or a semicolon-delimited list of folders that contain copies of client SWF files for an
application. These SWF files are used to verify connecting SWF files. The default value is the appli-
cation's folder appended with /SWFs. For example, for an application called myApplication, if there
isn’t a value set for this element, verifying SWF files should be placed in the applications/myAppli-
cation/SWFs folder.

MinGoodVersion None. Specifies the minimum version of this feature to accept. The default value is 0, which allows this
and all future versions.

UserAgentExcept
ions

None. Container.

Exception from

to

A user agent to except from verification. Use the from and to attributes to indicate the lowest and
highest versions to except. This a string comparison, with editing to make all numeric fields equal
in length. For more information, see the comments in the Application.xml file.

Cache None. Container.

TTL None. The time to live for the SWF file, in minutes. The default value is 1440 minutes (24 hours). If a SWF
file is removed from the server, the verification values stay in the cache for 24 hours; users can
connect to the application until the cache expires.

UpdateInterval None. The maximum time in minutes to wait for the server to scan the SWFs folders for updates when
there is a miss in the cache. The default value is 5 minutes, which means a SWF file copied to the
SWFs folder is picked up by the server within 5 minutes.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

23

These directories are intended for administrative purposes; SWF files placed in these directories can be verified to
view any application instance on the server. For example, if you created a recorded file viewer application that lets
you view files from any application on the server, you could place a verifying SWF file in directory specified in the
SWFFolder tag.

Create folders for the verifying SWF files
1 If the SWFFolder value is the default, create a folder called SWFs in the application’s folder on the server; for
example, applications/myMediaApp/SWFs.

SWF files in the SWFs folder verify connections to any instance of the myMediaApp application.

2 To verify SWF files for application instances, create instance folders in the SWFs directory, for example, applica-
tions/myMediaApp/SWFs/chat01, applications/myMediaApp/SWFs/chat02, and so on.

SWF files in the SWFs directory can verify all instances of the application; SWF files within an instance folder can
verify only that instance.

Note: Multiple SWF files may exist in either directory. A SWF file can be renamed and still used for verification as long
as it’s a copy of the client SWF file.

Limit access to Flash Media Administration Server
By default, a client can connect to Flash Media Administration Server from any domain or IP address, which can be
a security risk. If desired, you can change this in the AdminServer section of the Server.xml file.

1 Open RootInstall/conf/Server.xml and locate the following code:

<AdminServer>
...
<Allow>all</Allow>
...

</AdminServer>

2 Edit the Allow element to specify which connections to Flash Media Administration Server the server responds
to. This is specified as a comma-delimited list of host names, domain names, and full or partial IP addresses, as well
as the keyword all. For example: <Allow>x.foo.com, foo.com, 10.60.1.133, 10.60</Allow>.

3 Validate the XML, save the Server.xml file, and restart the server.

Disable RTMPE
By default, RTMPE is enabled in the server’s Adaptor.xml file. In some scenarios, you might want to disable RTMPE
(encrypted Real-Time Messaging Protocol). Because RTMPE uses encrypted channels, there is a minor impact on
performance; RTMPE requires about 15% more processing power than RTMP. If you don’t control the applications
that connect to Flash Media Server and you don’t want them to use RTMPE, you might want to disable RTMPE at
the server level.

To request an encrypted or encrypted tunneling channel, applications specify rtmpe or rtmpte, respectively, in the
NetConnection.connect() URL, for example,
nc.connect("rtmpe://www.example.com/myMediaApplication"). If an application specifies RTMPE without
explicitly specifying a port, Flash Player scans ports just like it does with RTMP, in the following order: 1935
(RTMPE), 443 (RTMPE), 80 (RTMPE), 80 (RTMPTE).

1 Open the fms.ini file (located in RootInstall/conf).

2 Set the ADAPTOR.RTMPE_ENABLED parameter to "off".

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

24

3 Restart the server.

Note: RTMPE cannot currently be used between servers or from edge to origin. In these cases, RTMPS can be used
instead.

See also
XML configuration files reference

Configure SSL
Secure Sockets Layer (SSL) is a protocol for enabling secure communications over TCP/IP. Flash Media Server
provides native support for both incoming and outgoing SSL connections. An incoming connection is a connection
between Flash Player and the server. An outgoing connection is a connection between two servers.

When SSL is configured, to use SSL, applications must specify the RTMPS protocol in the
NetConnection.connect() URL; for example,
nc.connect("rtmps://www.example.com/myMediaApplication").

RTMPS adheres to SSL standards for secure network connections and enables connections through a TCP socket on
a secure port. Data passed over the secure connection is encrypted to avoid eavesdropping by unauthorized third
parties. Because secure connections require extra processing power and may affect the server’s performance, use
RTMPS only for applications that require a higher level of security or that handle sensitive or critical data.

Note: All server editions support a version of RTMP called RTMPE, which is an 128-bit encrypted protocol. RTMPE is
more lightweight than SSL and is enabled by default. For more information, see the NetConnection.connect() entry
in the ActionScript 3.0 Language Reference or in the ActionScript 2.0 Language Reference.

Certificates
You can get an SSL certificate from a certificate authority or create a certificate yourself. If a certificate is signed by
an intermediate Certificate Authority (CA), it must include the intermediate certificate as part of the certificate that
the server returns to the client. Your certificate file (if signed by an intermediate CA) should look something like the
following:

-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----

The first BEGIN CERTIFICATE/END CERTIFICATE pair is your certificate. The next BEGIN CERTIFICATE/END
CERTIFICATE pair is the intermediate CA that signed your certificate. You can add additional sections as needed.

Secure incoming connections
Specify the location of the SSL certificate and the certificate’s private key, and configure the adaptor to listen on a
secure port.

1 Open the Adaptor.xml file for the adaptor you want to configure and locate the following code:

<Adaptor>
...
<SSL>

<SSLServerCtx>
<SSLCertificateFile></SSLCertificateFile>
<SSLCertificateKeyFile type="PEM"></SSLCertificateKeyFile>
<SSLPassPhrase></SSLPassPhrase>
<SSLCipherSuite>ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH</SSLCipherSuite>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

25

<SSLSessionTimeout>5</SSLSessionTimeout>
</SSLServerCtx>

</SSL>
...

</Adaptor>

2 Edit the following elements.

3 To configure a secure port for an adaptor, specify a minus sign before the port number in the
ADAPTOR.HOSTPORT parameter in the RootInstall/conf/fms.ini file, as follows:

ADAPTOR.HOSTPORT = :1935,-443

This tells the server to listen on ports 1935 and 443, and that 443 is a secure port that receives only RTMPS
connections. So a RTMPS connection to port 1935 will fail: the client attempts to perform a SSL handshake that
the server fails to complete. A RTMPS connection to port 443 will succeed: the client performs a SSL handshake
that the server completes. Similarly, a RTMP connection to port 443 will also fail: the server tries to perform a
SSL handshake that the client fails to complete.

4 Restart the server.

5 Check the RootInstall/logs/edge.00.log file to verify that no errors have been reported.

Configure incoming connections when multiple virtual hosts are assigned to one adaptor
You can configure the server to return a certificate based on which port a client connects to. This lets you assign
multiple virtual hosts to one adaptor and return a different certificate for each virtual host.

Note: Generally, if you’re hosting multiple customers, each virtual host has its own domain name. Each domain name
must have its own certificate.

1 Locate the following code in the Adaptor.xml file:

<Adaptor>
...
<Ho4stPortList>

<HostPort name="edge1" ctl_channel=":19350">${ADAPTOR.HOSTPORT}</HostPort>
</HostPortList>

Element Description

SSLCertificateFile The location of the certificate file to send to the client. Specify an absolute path or a path
relative to the adaptor folder.

SSLCertificateKeyFile
type="PEM"

The location of the private key file for the certificate. Specify an absolute path or a path
relative to the adaptor folder. The type attribute specifies the type of encoding used for
the certificate key file. This can be either "PEM" or "ASN1". The default value is "PEM".
The private key and the certificate can be combined into one file.

If the key file is encrypted, the passphrase must be specified in the SSLPassPhrase tag.

SSLPassPhrase The passphrase to use for decrypting the private key file. If the private key file is not
encrypted, leave this tag empty.

SSLCipherSuite The SSL ciphers: a colon-delimited list of components. A component can be a key
exchange algorithm, authentication method, encryption method, digest type, or one of
a selected number of aliases for common groupings. Do not change the default settings
unless you are very familiar with SSL ciphers. The possible values are listed in the
SSLCipherSuite entry in XML configuration files reference.

SessionTimeout The amount of time in minutes a session remains valid. Any value less than 1 is read as 1.
The default value is 5. If a client reconnects to a session before SessionTimeout is
reached, the cipher suite list isn’t sent during the SSL handshake.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

26

...
</Adaptor>

2 Create new HostPort elements with unique name and ctl_channel attributes and unique port values for RTMP
and SSL.

For example, add the following HostPort tag in addition to the default HostPort tag:

<HostPort name="edge2" ctl_channel=":19351">:1936,-444</HostPort>

3 For each HostPort element, enter an Edge element under the SSL element with an identical name attribute. If
you don’t specify an Edge element, the edge uses the default SSL configuration.

This sample code demonstrates how to configure edge1 to return cert2.pem when a client connects to it on port
443. Since there is no Edge tag for edge2, edge2 will use the default configuration specified in the SSLServerCtx
section that is directly under the SSL container tag. The edge2 server returns cert.pem when a client connects to it
on port 444.

<SSL>
<SSLServerCtx>

<SSLCertificateFile>cert.pem</SSLCertificateFile>
<SSLCertificateKeyFile>private.pem</SSLCertificateKeyFile>
<SSLPassPhrase></SSLPassPhrase>
<SSLCipherSuite>ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH</SSLCipherSuite>
<SSLSessionTimeout>5</SSLSessionTimeout>

</SSLServerCtx>
<Edge name="edge1">

<SSLServerCtx>
<SSLCertificateFile>cert2.pem</SSLCertificateFile>
<SSLCertificateKeyFile>private2.pem</SSLCertificateKeyFile>
<SSLPassPhrase></SSLPassPhrase>
<SSLCipherSuite>ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH</SSLCipherSuite>
<SSLSessionTimeout>5</SSLSessionTimeout>

</SSLServerCtx>
</Edge>

</SSL>

4 Validate the XML and save the file.

5 Restart the server.

Secure outgoing connections
1 Open the Server.xml file and locate the following code:

<Root>
<Server>

<SSL>
<SSLEngine></SSLEngine>
<SSLRandomSeed></SSLRandomSeed>
<SSLClientCtx>

<SSLVerifyCertificate>true</SSLVerifyCertificate>
<SSLCACertificatePath></SSLCACertificatePath>
<SSLCACertificateFile></SSLCACertificateFile>
<SSLVerifyDepth>9</SSLVerifyDepth>
<SSLCipherSuite>ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH</SSLCipherSuite>

</SSLClientCtx>
</SSL>

</Server>
</Root>

2 Edit the following elements.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

27

Configure adaptors to manage outgoing SSL connections independently
The SSL section in the Server.xml file configures all adaptors to use the same settings. However, you might want to
use a different certificate for each virtual host. In this case, assign one virtual host to each adaptor and configure your
adaptors individually to override the settings in the Server.xml file.

Copy the SSL section in the Server.xml file to the Adaptor.xml files and enter the new values. You don’t need to
copy the SSLRandomSeed tag, as this tag is a server-level setting that cannot be overridden in Adaptor.xml.

Configure virtual hosts to manage outgoing SSL connections independently
For example, you can disable certificate checking in one virtual host, use a certificate in a different folder for one
virtual host, and implement a different set of ciphers in a third virtual host.

1 Uncomment the SSL section under the Proxy tag in the appropriate Vhost.xml file:

<VirtualHost>
...
<Proxy>

<SSL>
<SSLClientCtx>

<SSLVerifyCertificate></SSLVerifyCertificate>
<SSLCACertificatePath></SSLCACertificatePath>
<SSLCACertifcateFile></SSLCACertificateFile>
<SSLVerifyDepth></SSLVerifyDepth>
<SSLCipherSuite></SSLCipherSuite>

</SSLClientCtx>

Element Description

SSLRandomSeed The number of bytes of entropy to use for seeding the pseudorandom number generator
(PRNG). You cannot specify anything less than 8 bytes, and the default value is 16.
Entropy is a measure of randomness. The more entropy, the more random numbers the
PRNG will contain.

The server may take longer to start up if you specify a large number.

SSLSessionCacheGC How often to flush expired sessions from the server-side session cache, in minutes.

SSLVerifyCertificate A Boolean value specifying whether to verify the certificate returned by the server being
connected to (true) or not (false). The default value is true. Disabling certificate veri-
fication can result in a security hazard. Do not disable verification unless you are certain
you understand the ramifications.

SSLCACertificatePath A folder containing certificates. Each file in the folder must contain only a single certifi-
cate, and the files must be named by the subject name's hash, and the extension ".0", for
example, e98140a6.0.

On a Windows 32-bit operating system, if this tag is empty, the server looks for certifi-
cates in the RootInstall\certs directory. You can import the Windows certificate store to
the certs directory by running FMSMaster -console -initialize from a command
line.

In Linux, you must specify the location of the certificates.

SSLCACertificateFile Specifies the name of a file containing one or more certificates in PEM format.

SSLVerifyDepth Specifies the maximum depth of an acceptable certificate. If a self-signed root certificate
cannot be found within this depth, certificate verification fails. The default value is 9.

SSLCipherSuite The SSL ciphers: a colon-delimited list of components. A component can be a key
exchange algorithm, authentication method, encryption method, digest type, or one of
a selected number of aliases for common groupings. Do not change the default settings
unless you are very familiar with SSL ciphers. The possible values are listed in the
SSLCipherSuite entry in XML configuration files reference.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

28

</SSL>
</Proxy>

</VirtualHost>

When the SSL tag is present, the entire SSL section is used to configure the virtual host. If an SSL tag is omitted
from this section, the server uses the default settings.

2 Restart the server.

Performing general configuration tasks

Allow Administration API methods to be called over HTTP
You must specify each Administration API method that may be called over HTTP.

1 Open the RootInstall/conf/fms.ini file.

2 Set the USERS.HTTPCOMMAND_ALLOW parameter to a comma-delimited list of APIs, and restart the server. The
default value is ping. For more information, see Users.xml file.

Allow application debugging connections
To play back streams and obtain data from shared objects, the Administration Console must make a special
debugging connection to the server. By default, the server does not allow this connection.

1 Open the Application.xml file of the virtual host or application you want to configure.

2 Locate the following XML:
<Debug>

<MaxPendingDebugConnections>50</MaxPendingDebugConnections>
<AllowDebugDefault>false</AllowDebugDefault>

</Debug>

3 Set the AllowDebugDefault element to true.

Note: Debug connections count against license limits.

4 Save and validate the file.

5 Restart the server.

Configuring IPv6
IPv6 (Internet Protocol version 6) is a new version of Internet Protocol that supports 128-bit addresses. The current
version of Internet Protocol, IPv4, supports 32-bit addresses. IPv6 alleviates the address shortage problem on the
Internet. A system that only runs IPv6 can't communicate with a system that only runs IPv4.

Important: In Red Hat Linux systems, you must update the NETWORKING_IPV6 value in /etc/sysconfig/network when
installing or uninstalling IPv6.

1. Activate IPv6 on the network interface card.

IPv6 is embedded in all operating systems that the server supports. You may need to activate IPv6 on the inter-
faces. For more information, see the operating system’s Help.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

29

2. Allow the server to listen on IPv6 sockets.

Open the RootInstall/conf/fms.ini file and set the SERVER.NetworkingIPV6 enable attribute to "true".
Restart the server.

3. Enclose numeric IPv6 addresses in URLs in brackets.

Wherever a numeric IPv6 address is used in a client-side script, server-side script, or in the server configuration
files, enclose it in brackets:

rtmp://[fd5e:624b:4c18:ffff:0:5efe:10.133.128.108]:1935/streamtest

You must specify the interface zone index for a link-local address:

rtmp://[fe80::204:23ff:fe14:da1c%4]:1935/streamtest

It’s a good idea to register the RTMP, RTMPS, and RTMPE protocols with a network services database and use
a service name (or decimal port number, if necessary) in the server configuration files.

4. Check the logs.

When the server starts, it logs available stack configuration, host name, and all available IP addresses for the host
in the master.xx.log, edge.xx.log, and admin.xx.log files (located in the RootInstall/logs/ directory). The
following x-comment fields from a sample edge log file indicate that the IPv6 stack and the IPv4 stack are
available, and that the server host has dual addresses and is listening on both interfaces:

FMS detected IPv6 protocol stack!
FMS config <NetworkingIPv6 enable=true>
FMS running in IPv6 protocol stack mode!
Host: fmsqewin2k3-02 IPv4: 10.133.192.42 IPv6: fe80::204:23ff:fe14:da1c%4
Listener started (_defaultRoot__?) : 19350/v6
Listener started (_defaultRoot__?) : 19350/v4
Listener started (_defaultRoot__?) : 1935/v6
Listener started (_defaultRoot__?) : 1935/v4

Note: On IPv6-enabled Linux, if you are using an IPv4 host name (a host name that resolves to IPv4) on an RTMPT or
RTMPTE connection, you should configure the Adaptor.xml appropriately to resolve connections quickly. See the
HTTPIdent2 tag in Adaptor.xml.

Defining Application object properties
You can define properties for the server-side Application object in the server’s Application.xml configuration files.
If you define properties in the default Application.xml file, the properties are available for all applications on a virtual
host. If you define properties in an Application.xml file in an application folder, the properties are available only for
that application.

To define a property, create an XML tag in the JSEngine section of the Application.xml file. The property name
corresponds to the tag’s name, and the property value corresponds to the tag’s contents.

For example, the following XML fragment defines the properties user_name and dept_name, with the values jdoe
and engineering, respectively:

<Application>
<JSEngine>

<config>
<user_name>jdoe</user_name>
<dept_name>engineering</dept_name>

</config>
</JSEngine>

</Application>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

30

To access the property in server-side code, use the syntax in either of these examples:

application.config.prop_name
application.config["prop_name"]

Note: The properties you define are accessible from application.config.property, not from
application.property.

For example, given the previous XML fragment, the following trace() statements are valid:

trace("I am " + application.config.user_name + " and I work in the " +
application.config.dept_name + " department.");
trace("I am " + application.config["user_name"] + " and I work in the " +
application.config["dept_name"] + " department.");

The output from either statement would be as follows:

I am jdoe and I work in the engineering department.

You can also use environment variables and symbols you define in the substitution.xml file. For example, assume
that the environment variable COMPUTERNAME is equal to jsmith01, and you have defined a symbol named DEPT in
the substitution.xml file:

<Root>
<Symbols>

<DEPT>Engineering</DEPT>
</Symbols>

</Root>

In addition, the following XML appears in the Application.xml file:

<Application>
<JSEngine>

<config>
<compName>${%COMPUTERNAME%}</compName>
<dept>${DEPT}</dept>

</config>
</JSEngine>

</Application>

In a server-side script, the following trace statements are valid:

trace("My computer's name is: " + application.config.compName);
trace("My department is: " + application.config.dept);

The output is as follows:

My computer's name is: jsmith01
My department is: Engineering

Note: In server-side code, trace() statements are displayed in the Live Log panel of the Administration Console.

See also
Using symbols in configuration files

Configure or disable native bandwidth detection
The server can detect a client’s bandwidth in the core server code (called native bandwidth detection), or in a server-
side script (called script-based bandwidth detection). Native bandwidth detection is faster than script-based because
the core server code is written in C and C++. Also, with native bandwidth detection, if a client connects through edge
servers, the outermost edge server detects the bandwidth, which results in more accurate data. Native bandwidth
detection is enabled and configured by default.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

31

The server detects bandwidth by sending a series of data chunks to the client, each larger than the last. If desired, you
can configure the size of the data chunks, the rate at which they’re sent, and the amount of time the server sends data
to the client. For more information about detecting bandwidth in an application, see the Developer Guide.

1 Locate the following code in the Application.xml file:

...
...

<BandwidthDetection enabled="true">
<MaxRate>-1</MaxRate>
<DataSize>16384</DataSize>
<MaxWait>2</MaxWait>

</BandwidthDetection>
...

...

Note: To disable native bandwidth detection, set the enabled attribute to false and restart the server.

2 Edit the following elements.

3 Save and validate the Application.xml file.

4 Restart the server.

Configuring content storage

About content storage
To improve server performance, configure storage correctly. The server can use local or network storage to serve
media files. If desired, you can change the default location where streams and shared objects are stored and also map
virtual directories to physical directories on local or network storage to organize content.

Note: When media files are used in an application, they are cached in local RAM.

Setting the location of application files
The applications folder registers applications with the server; that is, the presence of an application within the appli-
cations folder tells the server that the application exists. It is by default located at RootInstall/applications.

Within the applications folder, you create subfolders for your applications. Within each individual application folder,
you create subfolders to create instances of applications, for example:

RootInstall/applications/my_application/first_instance

Element Description

BandwidthDetection Set the enabled attribute to "true" or "false" to turn this feature on or off.

MaxRate The maximum rate in Kbps that the server sends data to the client. The default value is -
1, which sends the data at whatever rate is necessary to measure bandwidth.

DataSize The amount of data in bytes that the server sends to the client. To detect the client’s band-
width, the server attempts to send a series of random blocks of data to the client, each
time sending this much more data. For example, x bytes are sent, followed by 2x bytes,
followed by 3x bytes, and so on until MaxWait time has elapsed.

MaxWait The number of seconds the server sends data to the client. Increasing this number
provides a more accurate bandwidth figure, but it also forces the client to wait longer.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

32

To change the location of the applications folder and the live and vod applications, edit the locations in the following
parameters in the fms.ini file:

• Registered applications folder: VHOST.APPSDIR

• Live application: LIVE_DIR

• Vod application: VOD_DIR

Mapping directories to network drives
By default, the server runs as System Account with no access to network drives. You can change the service user to
a user with network access privileges with a UNC path.

A Windows network-mapped drive is not valid when a user is logged out. If the server is running as a service and
the user is logged out, the mapped drive is removed as well. To run with the mapped drive, lock the server instead of
logging out. Using the UNC path is preferred when the server is running as a service.

1 Stop Flash Media Server and Flash Media Administration Server.

2 Make the changes to the config.

3 Check that the the server user has appropriate access rights to map to the network drive (system account rights
are usually not sufficient.)

4 Restart Flash Media Server and Flash Media Administration Server.

Setting the location of recorded streams and shared objects
By default, all recorded streams for an application are stored in a streams folder in the application directory. Shared
objects are stored in a sharedobjects folder in the application directory.

Using the <storageDir> element in the Application.xml file, you can specify a different location to store streams or
shared objects. You could do this for vod applications; for example, if you already have a collection of video files in
a directory other than the application directory, you can set the storage directory to that other directory instead of
copying content to the application directory.

Note: If you use this tag to map to a network drive, see Mapping directories to network drives for additional information.

When you specify a value for the <storageDir> element in the application-specific XML, that value is specific to
the application. Otherwise, when you specify a value in the virtual host-level Application.xml, the scope is extended
to all the applications on that virtual host.

Within the directory that you specify as the storage directory, you must create physical subdirectories for different
application instances. Flash Media Server sandboxes the content for each instance of an application.

Let’s say, for example, you set the storage directory to C:\Content for the chatApp application:

<storageDir>C:\Content</storageDir>

When a user connects to the firstRoom instance of the chatApp application and tries to play a stream, the server
looks for the stream in a subfolder C:\Content\firstRoom. Content for each instance is sandboxed from other
instance of the same application; a user who connects to the secondRoom instance would not be able to access the
content in C:\Content\firstRoom.

If you do not want resources to be sandboxed by application and application instance, use virtual directories. See
Mapping virtual directories to physical directories.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

33

Mapping virtual directories to physical directories
Flash Media Server stores recorded streams and video and audio files in default locations in the application directory.
In some scenarios, you might want to specify particular locations for these resources, but without restricting access
by application or application instance. By mapping a virtual directory to a physical directory, you do not need to copy
resources to Flash Media Server’s application directory, and you can retain your existing classification and categori-
zation of resources.

Note: If you use this tag to map to a network drive, see Mapping directories to network drives for additional information.

To map a virtual directory for an application, you can use the <VirtualDirectory> element in the Vhost.xml or
the Application.xml file. This element provides various options:

• You can specify a virtual directory name or not. When a name is specified, the server maps the name to the
specified directory and first looks for the stream in the specified directory.

• When specified in an application-specific Application.xml file, <VirtualDirectory> controls only the storage
location of resources for that application. Any instance of the application can access video files in that location
(unlike with <storageDir>), but other applications cannot.

• When specified in the virtual-host Application.xml file or the Vhost.xml file, <VirtualDirectory> controls the
storage location of all applications on that virtual host. All applications on the virtual host can access video files in
the specified location, although Adobe recommends that if you want control at the virtual host level, you configure
the <VirtualDirectory> tag in the the Vhost.xml file instead of the virtual-host Application.xml file.

The order in which the server determines the correct directory to use for streams is as follows:

1 Virtual directory (as specified in <VirtualDirectory>)

2 Storage directory (as specified in <storageDir>)

3 Default location (the streams folder in the application directory)

Virtual directory example: vod
One usage scenario for this element is to specify a directory to use for a specific vod application and put video files
in this directory to make them instantly streamable. You would use the <VirtualDirectory> element in the appli-
cation-specific Application.xml file. To map a directory in this way, edit the application-specific Application.xml file
to include the virtual directory, as shown in the following example:

<Application>
<StreamManager>

<VirtualDirectory>
<!-- Specifies application specific virtual directory mapping for recorded
streams. -->
<Streams>/;C:\my_videos</Streams>

</VirtualDirectory>
</StreamManager>

</Application>

This code overrides the VHost.xml file’s mapping of '/' (if it exists) for this application only. A connecting client will
be able to play a file in the virtual directory, such as C:\my_videos\sample.flv, by connecting to the vod application
and issuing a NetStream play() call:

ns.play("sample");

or by passing "rtmp://myDomain/VOD/sample.flv" to the source property of a call to FLVPlayback.play().

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

34

The <VirtualDirectory> element in the application-specific Application.xml file affects only that particular appli-
cation, protecting your streams from being accessed by other applications on the same virtual host. It has a higher
precedence than the virtual directory mapping in the Vhost.xml file, so it will always be checked first.

Virtual directory example: Separating high- and low-bandwidth video
One way you can use directory mapping is to separate storage of different kinds of resources. For example, your
application could allow users to view either high-bandwidth video or low-bandwidth video, and you might want to
store high-bandwidth and low-bandwidth video in separate folders. You can create a mapping wherein all streams
that start with low are stored in a specific directory, C:\low_bandwidth, and all streams that start with high are stored
in a different directory:

<VirtualDirectory>
<Streams>low;c:\low_bandwidth</Streams>
<Streams>high;c:\high_bandwidth</Streams>

</VirtualDirectory>

When the client wants to access low-bandwidth video, the client calls ns.play("low/sample"). This call tells the
server to look for the sample.flv file in the c:\low_bandwidth folder.

A client connects to the sample.flv file in the low-bandwidth storage area on the server, which is mapped in Application.xml.

Similarly, a call to ns.play("high/sample") tells the server to look for the sample.flv file in the c:\high_bandwidth
folder.

Note that if the client calls ns.play("sample"), the stream name does not match any virtual directory specified, so
the server will then look for sample.flv inside the directory specified by the storage directory element
(<storageDir>). If no storage directory is specified by <storageDir>, then the server looks in the default location
(the streams folder) for the file; that is, the order in which the server looks for files is:

1 Virtual directory (as specified in <VirtualDirectory>)

2 Storage directory (as specified in <storageDir>)

3 Default location (the streams folder in the application directory)

Virtual directory example: Local and network file paths
The following table shows three examples of different virtual directory configurations, including mapping to a
network drive, and how the configurations determine the directory to which a recorded stream is published. In the
first case, because the URI specified ("myStream") does not match the virtual directory name that is specified
("low"), the server publishes the stream to the default streams directory.

C:\low_bandwidth\sample.flv

ns.play(”low/sample”);

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

35

Mapping in Vhost.xml
<VirtualDirectory><Streams> tag

URI in
NetStream call

Location of published stream

low;e:\fmsstreams "myStream" c:\...\RootInstall\applications\yourApp\streams_definst_\myStream.flv

low;e:\fmsstreams "low/myStream" e:\fmsstreams\myStream.flv

low;\\mynetworkDrive\share\fmsstreams "low/myStream" \\mynetworkDrive\share\fmsstreams\myStream.flv

36

Chapter 4: Using the Administration
Console
Use the Adobe Flash Media Server Administration Console to maintain the server, monitor applications, and
manage users. Application developers can also use the Administration Console to debug applications.

Connecting to the Administration Console

About the Administration Console
The Administration Console is an Adobe Flash Player application (fms_adminConsole.swf) that lets you manage the
server and view information about applications running on the server.

The Administration Console connects to Adobe Flash Media Administration Server, which connects to Adobe Flash
Media Server. To log in to the Administration Console, the Administration Server must be running.

By default, the Administration Server in installed on port 1111 (the default value at installation time). You can
change the port number of the Administration Server after installation by editing the fms.ini file.

Note: The Administration Console calls Administration APIs to inspect and manage the server. Use the Flash Media
Server Administration API Reference to build your own administrative applications.

Connect to the Administration Console
When you log in to the Administration Console as a virtual host administrator (not a server administrator), your
session is specific to a virtual host, and you can only manage applications running on that virtual host. To manage
applications running on a different virtual host, you need to log in to that virtual host. You cannot access applications
running on different virtual hosts in the same login session.

1 Do one of the following:

• On Windows, select Start > Programs > Adobe > Flash Media Server 3 > Flash Media Administration
Console.

• On Linux, open the fms_adminConsole.htm and fms_adminConsole.swf files in a browser with Flash
Player.

• On Mac, copy the fms_adminConsole.htm and fms_adminConsole.swf file to the Mac. Open the
fms_adminConsole.htm file in a web browser that has Flash Player installed.

The fms_adminConsole.swf and fms_adminConsole.htm files are located in the root installation folder.

2 Enter the name and address of the server or virtual host to which you want to connect.

• If you want, specify a server name; the server name is simply an alias you can use to connect to a server
quickly. The Administration Console remembers the server address for this server name the next time the
console is opened.

• In the Server Address box, do one of the following:

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

37

• Type localhost if the server and the Administration Console are running on the same computer. If the
Administration Server is installed on a port other than 1111 (the default), you must enter the port number
as well; for example, localhost:1234. This connects you to the default virtual host on this computer.

• To connect to a virtual host other than the default virtual host, enter the fully qualified host name. The
host name must be mapped to a valid network IP address.

• If you are connecting remotely by running the Administration Console on another computer, enter the
server’s name (FlashMediaServer.myCompany.com) or the IP address and port number (12.34.56.78:1112)
of the Administration Server to which you want to connect. Ensure your computer has permission to
connect to the specified port on the other computer. Also, check that the Administration Server has not been
configured to prohibit connections from the specific domain or IP address you are using.

3 Enter the administrator user name and password you entered during the Flash Media Server installation. If you
changed the administrator user name and password using the Administration Console or manually in the Users.xml
file, enter the new user name and password.

When logging in to a virtual host not on the default adaptor, virtual host administrators must specify the name
of the adaptor. For example, when logging in to a virtual host on the adaptor _secondAdaptor_, the adminis-
trator JLee would enter the following information in the Name box: _secondAdaptor_/JLee.

4 (Optional) Select the Remember My Password option.

5 (Optional) Select the Automatically Connect Me option.

6 (Optional) Click Revert to return the Administration Console to its default settings.

Reverting deletes all saved servers, user names, and passwords from the Administration Console. All custom
resizing within the Administration Console is restored to the original state. (The Revert button, however, does
not affect the server.)

7 Click Login.

You can disconnect at any time by clicking Logoff.

Note: The color of the vertical bar in the upper-right corner (next to the question mark icon) indicates whether the
Administration Console is connected (green) or not connected (red) to a server.

Near the top of every screen of the Administration Console are two icons. Click the folder icon to display links to the
Flash Media Server website and related resources. Click the question mark icon to display links to Flash Media Server
Help.

To run the Administration Console from a computer other than the one in which the server is installed, copy
fms_adminConsole.htm and fms_adminConsole.swf to the other computer, or make sure that this file is in the
webroot directory so it can be accessed remotely. In both cases, verify that the Allow and Deny tags in the Users.xml
file allow the connection from the other computer’s IP address.

Change or pause the refresh rate
The information in the Administration Console panels is refreshed every 5 seconds by default. You can change the
refresh rate to any time interval between 1 and 60 seconds, or pause refreshing at any time.

Change the refresh rate of Administration Console
Click the pop-up menu next to Refresh Rate (upper-right corner) and select a new time duration, such as

10 seconds.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

38

Pause refreshing the Administration Console
1 Click the pop-up menu next to Refresh Rate (upper-right corner), scroll down, and select Pause.

2 Click Pause Refresh to continue.

A red border appears around the panels of the Administration Console to show that the refresh feature is paused.

3 To start refreshing information again, click the pop-up menu and select a time duration.

Access Help

Access Flash Media Server LiveDocs
❖ From the Administration Console, select Help/Documentation.

Access locally installed help
❖ On Windows, select Start > Programs > Adobe > Flash Media Server > Documentation.

❖ On Linux or Mac OS, open the documentation folder in the installation directory.

Inspecting applications

View applications
After connecting to a server or virtual host, the Administration Console displays a panel that lists the currently
running application instances. From here, the state of an application can be monitored.

Use the View Applications panel to view, load, and unload application instances.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

39

Note: If you add an application while the Administration Service is running and the new application doesn't appear in
the Administration Console, move to another panel and then back to refresh the console.

Manually load an application instance in the Administration Console
1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Enter the name and address of the server or virtual host to which you want to connect.

3 Enter the administrator user name and password.

4 Click View Applications.

5 Click New Instance.

6 Select the application from the pop-up menu. (The application must already be configured on the server.)

7 The Administration Console adds a default instance suffix _definst_, which can be edited. Press Enter to
submit the name and start the application instance. To cancel, press Shift+Escape.

Reload an application instance in the Administration Console
Reload an application instance to reload the server-side scripts for the instance or to disconnect all of its users while
immediately allowing new connections.

1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click View Applications.

3 Select an application from the list.

4 Click Reload (circular arrow icon to the right of the Performance tab).

View information about an application
1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click View Applications.

3 Select the application from the list. The following information is listed for the application on the different tabs:

• Log messages generated by the application instance on the server

• A list of clients connected to the application instance

• A list of active shared objects for the application instance

• A list of active streams for the application instance

• Information about the overall state of the selected application instance, such as total uptime or number
of users

Sort application list
1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click View Applications.

3 In the applications list, do one of the following:

• Click the Name column header to sort the applications list by name.

• Click the Clients column header to sort by client.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

40

End an application instance
When an application instance is ended, all users are disconnected and all instance resources are released.

1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click View Applications.

3 Select an application from the list.

4 Click Unload (stop icon to the right of the Performance tab)

Viewing log messages for an application
The Administration Console Live Log panel displays log messages and trace() statements from server-side scripts
for the selected application instance. The information in this panel is updated whenever the application instance
generates a log message. (If the console refresh feature is paused, log messages are still received.)

Live Log panel

1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click View Applications.

3 Click Live Log.

4 Select an application from the list.

5 Type string text in the Find text box and click Find Next. Use the Find Previous and Clear Log buttons as
necessary.

Viewing active streams
Use the Administration Console Streams panel to view information about streams and to play streams.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

41

Streams panel

1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click View Applications.

3 Click Streams.

4 Select an application from the list. The Streams panel displays the following information:

• Name: For NetStream streams, the name is the NetStream ID (a server-generated number). For a live stream
being published, the entry displays the live stream name. For a recorded steam, the entry displays the FLV or
MP3 filename; for example, flv:stream2.flv or mp3:sound.mp3. If a client requests the stream2.flv, there will be
two entries: one for flv:stream2.flv (stored) and one for the actual network stream going to the client.

• Type: A string that describes the type of stream, either stored, live, or NetStream.

5 Select a stream to view its properties. The values of the properties are as follows:

• Name: The actual stream name, not streamID.

• Status: States if the stream is publishing, playing live, or playing recorded.

• Client: The client ID playing the stream.

• Time: The time that the client started playing the stream.

Note: If the stream type is available for debugging, the Administration Console displays its properties in the
adjoining panel. If the type is not available for debugging, an error message is displayed.

6 Click Play Stream to start playing the selected stream in a separate window that is the size of the selected stream.
(The Play Stream button appears only if a debug connection is possible. Only named streams can be played.)

Viewing active clients
The Administration Console Clients panel lists detailed information about all clients connected to an application.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

42

Clients panel

1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click View Applications.

3 Click Clients.

4 Select an application from the list. The following information is displayed:

• Client ID: The internal ID of the client; this represents a server-generated number that Flash Media Server
uses to identify each client.

• Protocol: The connection protocol that the client uses, such as RTMP.

• Bytes In and Bytes Out: The average bytes per second being sent to and from the server. The Administration
Console calculates this ratio by dividing the total number of bytes received in the most recent 15 seconds by 15.
When the panel first appears, these figures appear as pending because there is only one data point to start with;
figures appear after the panel is open for 15 seconds.

• Connection Time: The date and time the client connected.

• Messages In and Messages Out: The number of messages sent to or from the client. Messages In reflects
update requests sent from clients to the server; Messages Out reflects notification of successful updates sent from
the server to connected clients.

• Drops: The number of messages dropped since the client connected. For live streams, audio, and video,
messages may be dropped; for recorded streams, only video messages are dropped. Command messages are
never dropped.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

43

Viewing active shared objects
The Administration Console Shared Objects panel lists the active shared objects for an application and can be useful
when debugging an application. The information is automatically refreshed every 5 seconds (this duration is config-
urable), or click Refresh to refresh at any time. The Administration Console displays the name, type (persistent or
temporary), and connections (number of users subscribed) of each shared object.

Shared Objects panel

1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click View Applications.

3 Click Shared Objects.

4 Select an application from the list.

5 To display information about a shared object, click the object. The number of users currently connected to and
using the shared object is displayed, along with the data properties assigned to the shared object.

Note: If the shared object is available for debugging the application, the Administration Console displays its properties.
If the shared object is not available for debugging, an error message is displayed.

View performance information
The Administration Console Performance panel shows information about the overall state of the application
instance. The information is automatically refreshed every 5 seconds (this duration is configurable), or click Refresh
to refresh at any time.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

44

Performance panel

1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click View Applications.

3 Click Performance.

4 Select an application from the list. The following information is displayed:

• Clients: Information about clients connected to this application instance, including the total number of
clients who connected to the application instance since it started, active clients, and the number of users whose
attempts to connect to the application instance were rejected. (To determine why connections may have failed,
look at the Live Log panel under View Applications.)

• Lifespan: The length of time the application instance has been running and the date and time it began to run.

• Messages Per Second: The average number of messages (video frames, audio packets, and command
messages) sent per second.

• Bytes Per Second: The average number of bytes sent per second for this application instance. The Adminis-
tration Console calculates this ratio by determining the total number of bytes received in the most recent 15
seconds and dividing that value by 15. When the panel first appears, these figures appear as pending because
there is only one data point to start with; figures appear after the panel is open for 15 seconds.

• Active Connections: The number of users currently connected to the application instance.

• Bandwidth: The amount of data that the application instance manages, including data sent, data received,
and the combined amount of data traffic.

• CPU and Memory Usage: The percentage of CPU and memory used by Flash Media Server.

5 Select and deselect checkboxes to customize the information displayed on the graphs. For example, in the
Bandwidth graph, select Total and deselect In and Out to show only the total amount of bandwidth used.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

45

Managing administrators

About administrator roles
Administrators are users who are allowed to log in to the Administration Console. There are two types of adminis-
trators: server administrators and virtual host administrators.

Server administrators can control all virtual hosts and perform server-level tasks, such as restarting or shutting down
the server. Server administrators can access and perform all operations on all tabs.

Virtual host administrators can manage the applications on their virtual host—for example, they can reload or
disconnect applications. Virtual host administrators can access and perform operations on the View Applications
tabs. They cannot manage servers or administrative users.

Add administrators

Add server administrators
1 Open the RootInstall/conf/Users.xml file.

2 Locate the UserList section.

3 Add a new <User></User> section for each server administrator you want to add.

The User name attribute specifies the user name. The Password element specifies the password. The Allow,
Deny, and Order elements specify the hosts from which the administrator can connect to the Administration
Console. The following sample XML adds a user who can connect from any domain:

<UserList>
<User name="${SERVER.ADMIN_USERNAME}">

<Password encrypt="false">${SERVER.ADMIN_PASSWORD}</Password>
<Allow></Allow>
<Deny></Deny>
<Order>Allow,Deny</Order>

</User>
<User name="janedoe">

<Password encrypt="false">S4mpl3P4ss</Password>
<Allow></Allow>
<Deny></Deny>
<Order>Allow,Deny</Order>

</User>
</UserList>

For more information, see the comments in the Users.xml file.

4 Validate the XML and save the Users.xml file.

5 Restart Flash Media Administration Server.

Add virtual host administrators
1 Open the Users.xml file in the root folder of the virtual host; for example, RootIn-
stall/conf/_defaultRoot_/www.sampleVhost.com/Users.xml. If the file doesn’t exist, copy the Users.xml file from the
RootInstall/conf folder.

2 Locate the UserList section.

3 Add a new <User></User> section for each server administrator you want to add.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

46

The User name attribute specifies the user name. The Password element specifies the password. The Allow,
Deny, and Order elements specify the hosts from which the administrator can connect to the Administration
Console. The following sample XML adds a user who can connect from any domain:

<UserList>
<User name="${SERVER.ADMIN_USERNAME}">

<Password encrypt="false">${SERVER.ADMIN_PASSWORD}</Password>
<Allow></Allow>
<Deny></Deny>
<Order>Allow,Deny</Order>

</User>
<User name="vHostAdmin">

<Password encrypt="false">Ex4mpl3P4ss</Password>
<Allow></Allow>
<Deny></Deny>
<Order>Allow,Deny</Order>

</User>
</UserList>

For more information, see the comments in the Users.xml file.

4 Validate the XML and save the Users.xml file.

5 Restart Flash Media Administration Server.

Managing server administrators
You must be a server administrator (not a virtual host administrator) to perform operations on the Manage
Users tab.

Add a server administrator
1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click Manage Users.

3 Click New User.

4 Type a user name and password.

5 Click Save or Save And Add Another.

Reset user password
1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click Manage Users.

3 Click Reset The Password For This User.

4 Type a new password.

Delete user account
1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click Manage Users.

3 Click Delete This User Account On The Server.

4 Confirm the action.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

47

Managing the server

Monitoring server performance
You can review the performance of individual servers or a group of servers using the Administration Console. The
servers are arranged in a tree structure.

A series of tabs is displayed along the top of the Manage Servers panel. From here, you can perform the following
actions:

• Review the performance statistics for the computer where the applications are running.

• Review information about connections to the server.

• Review information about the applications located on the server or virtual hosts.

• Review server licenses and, if necessary, add serial keys.

• Review the access log and server log.

The Servers panel occupies the left side of the screen in this section of the Administration Console. The panel lists
the servers and virtual hosts that you can access and manage.

Manage Servers panel

Use the small buttons at the top and bottom of the panel to perform the following tasks:

• Add a new server to the list.

• Edit server login information (user name and password) and select options such as remembering the password
and automatically connecting when logging in to the server.

• Delete a server from the list.

• Connect to the selected server.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

48

• Ping the server to verify that it is running.

• Restart the server or a virtual host.

• Run garbage collection to clear unused server resources, such as streams and application instances, from
memory. (Automatic garbage collection intervals can be set in the Server.xml and VHost.xml configuration files.)

• Stop a server or virtual host.

Viewing server details
The Administration Console Details panel displays live information for the server.

1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click Manage Servers.

3 Click Details.

4 Select a server from the list. The following information is displayed:

• Total number of current clients

• Life span of the server

• Graphical displays of active connections, bandwidth resources consumed, and CPU and memory resources
consumed

Viewing connection details
The Administration Console Connections panel lists all client connections to the selected server.

1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click Manage Servers.

3 Click Connections.

4 Select a server from the list. The following information is displayed for each client accessing the server or
virtual host:

• Server name

• If connection has been made

• Number of connections

• Number of disconnections

• Number of bytes in and out

• Number of messages dropped

Viewing application details
The Administration Console Applications panel displays detailed information for all the applications running on the
selected server or virtual host.

1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click Manage Servers.

3 Click Applications.

4 Select a server from the list. The name of each application, along with the following information, is displayed:

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

49

• Server name

• Application name

• Number of instances of the application that have been loaded on and unloaded from the server

• Number of users that are connected

• Number of users that have connected and disconnected

• Number of instances currently active

• Number of instances that have been unloaded from the server

• Total number of connections that have been accepted and rejected for each application

Viewing license files
The Administration Console License panel is where you add serial keys. The panel also displays detailed information
for all serial keys authorizing you to run Flash Media Server on the selected server. The lower frame displays infor-
mation about custom licenses.

1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click Manage Servers.

3 Click License.

4 Select a server from the list. For each license, the following information is displayed:

• The individual serial key number

• Authorized peak number of client connections

• Bandwidth cap

• Whether the license is valid (true) or not (false)

Note: Your organization may have more than one license, so note the capacity totals listed near the bottom of the Admin-
istration Console.

Add a serial key
Add serial keys in the Administration Console License panel.

1 Follow the steps in “Connect to the Administration Console” on page 36.

2 Click Manage Servers.

3 Click License.

4 Enter the serial key number in the text boxes at the bottom of the Administration Console.

5 Click Add Serial Key.

Note: Serial numbers that are added manually (that is, added by editing configuration files directly) to either fms.ini or
the <LicenseInfo> tag of the Server.xml file cannot be removed using the Administration Console. Only serial numbers
that are added using the Administration Console can be deleted using the Administration Console.

View the access log file
The Administration Console Server Log panel displays messages that are written to the access log.

1 Follow the steps in “Connect to the Administration Console” on page 36.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

50

2 Click Manage Servers.

3 Click Server Log.

4 Select a server from the list.

5 To locate a specific string, type it in the Find text box and click Find Next. Use the Find Previous and Clear Log
buttons as necessary.

51

Chapter 5: Monitoring and Managing
Log Files
Adobe Flash Media Server has a variety of log files to help you manage and troubleshoot the server. The log files track
server activity, such as who is accessing the server, how users are working with applications, and general diagnostics.

Working with log files

Managing log files
Flash Media Server maintains several different types of logs. The server outputs statistics about client connections
and stream activity to access logs. Flash Media Server also maintains diagnostic logs and application logs for appli-
cation activities. (The application and diagnostic logs are an addition to operating system logs that track error and
informational messages about Flash Media Server operations.)

access.log Tracks information about users accessing the server.

application.log Tracks information about activities in application instances.

diagnostic logs Tracks information about server operations.

Note: In Adobe Flash Player 9 Update 3, Flash Player no longer notifies the server about pause events.

Rotating and backing up log files
Log files grow larger over time, but there are methods for managing log file size.

One option is to rotate log files, moving or deleting the oldest files. Use the rotation element in the Logger.xml file
to specify a rotation schedule for log files. Two types of rotation schedules can be established. The first option is to
set a daily rotation at a certain time. For example, setting daily at 00:00 rotates files every 24 hours at midnight. Alter-
natively, set a rotation that occurs when the log exceeds a specified length. Name, maximum file size in kilobytes,
and maximum number of log files to keep can also be customized using the rotation element. For a sample, see the
Logger.xml file installed with Flash Media Server in the /conf directory.

Note: Log file rotation cannot be disabled. To effectively turn off rotation, however, you can choose a large maximum
size and a long maximum duration.

You can write an operating system script to delete or back up the log regularly. For important log files, you must move
the log directory to a backup location. The current active file can be moved; the server creates a new file on the next
log event.

Verifying IPv6 in log files
IPv6 (Internet Protocol version 6) is a new version of the Internet Protocol that supports 128-bit addresses. To use
IPv6, you need to activate IPv6 on the network interface card, enable Flash Media Server to listen on IPv6 sockets,
and enclose numeric IPv6 addresses in URLs within brackets.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

52

After following those steps, Flash Media Server (when it starts) logs available stack configuration, host name, and all
available IP addresses for the host in the master.xx.log, edge.xx.log, and admin.xx.log files. The following x-comment
fields from a sample edge log file indicate that the IPv6 stack and the IPv4 stack are available, and that the Flash
Media Server host has dual addresses and is listening on both interfaces;

FMS detected IPv6 protocol stack!
FMS config <NetworkingIPv6 enable=true>
FMS running in IPv6 protocol stack mode!
Host: fmsqewin2k3-02 IPv4: 10.133.192.42 IPv6: fe80::204:23ff:fe14:da1c%4
Listener started (_defaultRoot__?) : 19350/v6
Listener started (_defaultRoot__?) : 19350/v4
Listener started (_defaultRoot__?) : 1935/v6
Listener started (_defaultRoot__?) : 1935/v4

Note: In Red Hat Linux, the edge logs display only the highest IP version the socket listeners are using, even if the socket
listeners accept connections over both IPv4 and IPv6. In the example above, in Linux, only the two /v6 entries would be
displayed.

For more information about using IPv6, see Configuring IPv6.

Access logs

Reading access logs
The access log records information about requests by Flash Player and Flash Media Server application instances.
Using these logs, you can find out about various events, such as when a user connected to the server, how much total
bandwidth was consumed during the session, and which streams were accessed by the connection (and similar
resource information). You can use the status codes associated with specific events to troubleshoot event failures. You
can also use this information to determine which applications are used most.

The default access log is access.xx.log, which is located in the Flash Media Server logs directory. The default config-
uration for Flash Media Server creates a single access log per server. You can also configure Flash Media Server to
create a separate file per virtual host. When logging is configured on a per-virtual-host basis, all logs for a particular
virtual host are found in a subdirectory within the logs directory. The name of the subdirectory matches the virtual
host name. Substitution strings can be found in the [] brackets, with YYYY, MM, DD, and NN representing year,
month, date, and version, respectively. You can use the substitution string to customize the filename of the access
log. (For example, access.[YYYYMMDDNN].log could be named access.2007052401.log.) To configure the server
to create separate log files for each virtual host, set the value of the Scope tag in the Server.xml file to “vhost.” (This
is a separate scope tag just for logging.)

Note: The access logs are in W3C format. Administrators can use standard parsing tool to parse the log files.

Flash Media Server defines event categories, and for each category, it defines events that can be recorded. Logging
can be customized to record all events or only specific events by editing the <Events> and <Fields> elements in
the Logger.xml file.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

53

Access events defined in access logs

Fields in access logs
Note: When the data for this field contains a space or delimiter, the data is wrapped in double quotation marks. The
double quotation marks surrounding the data are not part of the data, but are present for better parsing of the data. This
applies to the tz, x-ctx, x-adaptor, x-vhost, s-uri, c-referrer, c-user-agent, cs-bytes, sc-bytes, and x-sname fields.

The following formats apply to the fields in the table below:

For date: YYYY-MM-DD

For time: hh:mm:ss

For time zone: string such as “UTC,” “Pacific Daylight Time,” or “Pacific Standard Time”

Event Category Description

connect-pending application Client connects to the server, waiting for the client to be authenticated.

connect application Client connects to the server.

disconnect application Client disconnects.

publish application Client publishes a live stream.

unpublish application Client unpublishes a live stream.

play application Client plays a stream.

pause application Client pauses stream.

unpause application Client resumes playing stream.

seek application Client jumps to a new location within a recorded stream.

stop application Client stops playing or publishing a stream.

record application Client begins the recording of a stream.

recordstop application Client stops the recording of a stream.

server-start application Server has started.

server-stop application Server has stopped.

vhost-start application A virtual host has started.

vhost-stop application A virtual host has stopped

Field Category Description

x-event application Type of event.

x-category application Event category.

date application Date of the event.

time application Time the event occurred.

tz application Time zone information.

x-ctx application Event-dependent context information.

x-pid application Server process ID.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

54

x-cpu-load application CPU load.

x-mem-load application Memory usage (as reported by the getServerStats() method).

x-adaptor application Adaptor name.

x-vhost application Virtual host name.

x-app application Application names.

x-appinst application Application instance names.

c-ip application Client IP address.

c-proto application Connection protocol: RTMP or RTMPT.

s-uri application URI of the Flash Media Server application.

c-referrer application URI of the referrer.

c-user-agent application User agent.

c-client-id application Client ID.

cs-bytes application This field shows the number of bytes transferred from the client to the
server.

This information can be used to bill customers per session. To calculate the
bandwidth usage per session, subtract cs-bytes in the “connect” event from
cs-bytes in the “disconnect” event.

sc-bytes application This field shows the number of bytes transferred from the server to the
client.

This information can be used to bill customers per session. To calculate the
bandwidth usage per session, subtract sc-bytes in the “connect” event by
sc-bytes in the “disconnect” event

c-connect-type Type of connection received by the server:

Normal: Connection from a client, such as Flash Player

Group: Connection between an edge and an origin server

Virtual: Client connection that goes through an edge server, using the
group connection between the servers for transmission

x-service-name Name of the service providing the connection (only applicable to certain
connection types).

x-sc-qos-bytes Number of bytes sent to client for quality of service.

x-comment Comments.

x-sname application Stream name.

x-file-size application Stream size, in bytes.

x-file-length application Stream length, in seconds.

x-spos application Stream position.

cs-stream-bytes application This field shows the number of bytes transferred from the client to the
server per stream.

To calculate the bandwidth usage per stream, subtract cs-stream-bytes in
the “publish” event from cs-stream-bytes in the “unpublish” event.

Field Category Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

55

Event status codes in access logs
The Event status codes are based on HTTP response codes.

sc-stream-bytes application This field shows the number of bytes transferred from the server to the
client per stream.

To calculate the bandwidth usage per stream, subtract sc-stream-bytes in
the “play” event from sc-stream-bytes in the “stop” event.

Note: sc-stream-bytes can be greater than x-file-size after streaming files
not encoded in FLV format, such as MP3 files.

cs-uri-stem application Stem portion of s-uri (omitting query) field.

cs-uri-query application Query portion alone of s-uri.

x-sname-query application Query portion of stream URI specified in play or publish.

x-file-name application Full path of the file representing the x-sname stream.

x-file-ext application Stream type (currently, this can be FLV or MP3).

s-ip application IP address or addresses of the server.

x-duration application Duration of a stream or session event.

x-suri-query application Same as x-sname-query.

x-suri-stem application This is a composite field: cs-uri-stem + x-sname + x-file-ext.

x-suri application This is a composite field: cs-uri-stem + x-sname + x-file-ext + x-sname-
query.

x-status application For a complete description of the x-status codes and descriptions, see Fields
in diagnostic logs.

Field Symbol Status Code Description

connect pending status_continue 100 Waiting for the application to authenticate.

disconnect status_admin_command 102 Client disconnected due to admin
command.

disconnect status_shutdown 103 Client disconnected due to server shut-
down (or application unloaded).

connect, publish, unpublish,
play, record, record stop, stop

status_OK 200 Successful.

connect status_unavailable 302 Application currently unavailable.

connect, publish, play status_bad_request 400 Bad request; invalid parameter or client
connected to server using an unknown
protocol.

connect, play, publish status_unauthorized 401 Connection rejected by application script,
or access denied by application.

connect status_forbidden 403 Connection rejected by Authorization plug-
in, or connection rejected due to invalid URI.

connect, play object_not_found 404 Application or stream not found.

Field Category Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

56

play client_disconnect 408 Stream stopped because client discon-
nected.

connect, publish status_conflict 409 Resource limit exceeded. (In authorization, a
change has been made by the Authoriza-
tion plug-in.) Or, Stream is already being
published.

connect status_lic_limit_exceeded 413 License limit exceeded.

play, publish unsupported_type 415 Unsupported media type.

disconnect data_exceeded 416 Message queue too large; disconnect the
client.

connect chunkstream_error 417 Unable to process unknown data type.

disconnect cannot_broadcast 418 Client does not have privilege to broadcast.

disconnect cannot_screenshare 419 License to receive screen sharing video
failed.

disconnect remote_link_closed 420 Close downstream connection.

connect process_msg_failed 422 Unable to process message received when
client connection was in pending or closed
state.

disconnect process_msg_exception 423 Error handling message.

disconnect process_remote_msg_failed 424 Expected response not provided when
command was issued.

disconnect process_admin_msg_failed 425 Expected response not provided when
issued an admin command.

disconnect process_rtmp_S2S_msg_failed 426 Expected response not provided when
command issued.

disconnect write_error 427 Client is not connected or client terminated;
unable to write data.

disconnect invalid_session 428 Client connection invalid; closed due to
inactive or idle status.

disconnect gc_client 429 Unable to obtain ping response or client
states not connected.

disconnect remote_onstop 430 Upstream connection closed.

disconnect remote_on_client_disconnect 431 Upstream connection closed because the
last client disconnected.

disconnect gc_idle_client 432 Flash Media Server autoclose feature auto-
matically closed the connection.

disconnect swf_hash_fail 433 SWF verification failure.

disconnect swf_hash_timeout 434 SWF verification timeout.

disconnect encoding_mismatch_error 435 Client disconnected due to incompatibility
with object encoding.

disconnect, play server_internal_error 500 Server internal error.

Field Symbol Status Code Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

57

Application logs

Application log file
The application log records information about activities in application instances. This log is used primarily for
debugging (logging uncommon events that occur in an application instance).

The default application log is application.xx.log, located in the subdirectory within the Flash Media Server logs
directory. Flash Media Server is configured, by default, to create one application log per application instance. The
application folder is located in the matching virtual host directory. The “xx” in the filename is a two-digit number
representing the history of the application log. The most recent logs can be found in application.00.log.

Fields in application logs

connect bad_gateway 502 Bad gateway.

connect service_unavailable 503 Service unavailable; for instance, too many
connections pending for authorization by
access module.

disconnect js_disconnect 600 Application disconnect.

disconnect js_close_previous_client 601 Network connection was closed or reused.

disconnect js_exception 602 An unknown exception is thrown from the
JS engine.

disconnect js_chunkstream_error 603 Bad application data.

disconnect js_debug_forbidden 604 Application does not allow debug connec-
tions.

play js_gc_object 605 ~fcstreamjshook() clean up.

Field Event(s) Description

date All Date of the event.

time All Time of the event.

Field Symbol Status Code Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

58

Diagnostic logs

Diagnostic log file
The diagnostic log records information about Flash Media Server operations (this is in addition to the information
logged by the operating system). This log is used primarily for debugging (logging uncommon events that occur in
Flash Media Server processes).

The default diagnostic logs are master.xx.log, edge.xx.log, core.xx.log, admin.xx.log, and httpcache.xx.log. All the
diagnostic logs are located in the Flash Media Server logs directory. Flash Media Server is configured, by default, to
create a diagnostic log for each type of process. The “xx” in the filename is a two-digit number representing the
version of the log.

For a list of messages that appear in the diagnostic log files, see Diagnostic Log Messages.

Fields in diagnostic logs

x-pid All Server process ID.

x-status All Status code: The code is a 10-character string that represents the severity,
category, and message ID.

The first three characters represent severity, as follows:

(w) = warning

(e) = error

(i) = information

(d) = debug

(s) = trace from server-side script

(_) = unknown

The next three characters represent category. All categories are listed in
Status categories in diagnostic logs.

The last four characters represent message ID. All message IDs are listed in
Diagnostic Log Messages.

x-ctx All Event-dependent context information.

Field Event(s) Description

date All Date on which the event occurred.

time All Time at which event occurred.

Field Event(s) Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

59

Status categories in diagnostic logs

x-pid All Server process ID.

x-status All Status code: The code is a 10-character string that represents the severity,
category, and message ID.

The first three characters represent severity, as follows:

(w) = warning

(e) = error

(i) = information

(d) = debug

(s) = trace from server-side script

(_) = unknown

The next three characters represent category. All categories are listed in
Status categories in diagnostic logs.

The last four characters represent message ID. All message IDs are listed in
Diagnostic Log Messages.

x-stx All Event-dependent context information.

Category Description

257 TCService

258 TCServer

259 Presence

260 Storage

261 Stream

262 SMTP

263 Adaptor

264 JavaScript

265 TCApplication

266 TCConnector

267 Admin

268 SharedObject

269 Configuration

270 VirtualHost

271 SSL

Field Event(s) Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

60

Configuration files for logging
Flash Media Server logging is configured through the Server.xml and Logger.xml configuration files. Server.xml
contains a Logging section that controls the overall logging behavior. This section includes an Enable tag that deter-
mines whether logging takes place, and a Scope tag that determines whether Flash Media Server writes separate log
files for each virtual host or one file for the entire server. The location of each log file is determined by the Directory
and FileName tags in the Logger.xml file(s).

Logger.xml files may be provided at the configuration root folder right next to Server.xml, and optionally for each
virtual host right next to VHost.xml. The root Logger.xml file determines the logger configuration when the logging
scope is server-wide. Optionally, a specific virtual host Logger.xml controls the logging behavior for a given virtual
host. (If the scope is server-wide, virtual host Logger.xml files are not applicable.) The virtual host-specific
Logger.xml configuration file is relevant only when the activities for each virtual host are being logged in a separate
log file.

Note: The root Logger.xml controls the logging behavior when the scope is set to vhost if the optional virtual host
Logger.xml does not exist.

For more information, see the Server.xml and Logger.xml files installed with Flash Media Server in the RootIn-
stall/conf directory.

Note: Log file rotation cannot be disabled. To effectively turn off rotation, however, you can choose a large maximum
size and a long maximum duration.

61

Chapter 6: Administering the server
Perform regular administrative tasks to keep the server running smoothly.

Start and stop the server

Start and stop the server in Windows
Use one of the following methods to shut down or restart the server.

Start the server from the Start menu
Do one of the following:

• Choose Start > All Programs > Adobe > Flash Media Server 3 > Start Flash Media Server 3

• Choose Start > All Programs > Adobe > Flash Media Server 3 > Start Flash Media Administration Server 3

Stop the server from the Start menu
Do one of the following:

• Choose Start > All Programs > Adobe > Flash Media Server 3 > Stop Flash Media Administration Server 3

• Choose Start > All Programs > Adobe > Flash Media Server 3 > Stop Flash Media Server 3

Start, stop, or restart the server from the Services window
1 Choose Start > Control Panel > Administrative Tools > Services.

2 Do one of the following:

• Select Flash Media Server (FMS) from the Services list and click Stop, Start, or Restart.

• Select Flash Media Administration Server from the Services list and click Stop, Start, or Restart.

Start and stop the server in Linux

Start, stop, or restart Flash Media Server
1 Log in as a root user.

2 Change to the directory where the server is installed.

3 Open a shell window and type one of the following:

• ./fmsmgr server fmsstart

• ./fmsmgr server fmsstop

• ./fmsmgr server fmsrestart

Start, stop, or restart the Administration Server
1 Log in as a root user.

2 Change to the directory where the server is installed.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

62

3 Open a shell window and type one of the following:

• ./fmsmgr adminserver start

• ./fmsmgr adminserver stop

• ./fmsmgr adminserver restart

Start, stop, or restart Flash Media Server using the command line
1 * cd /<the directory where FMS is installed>.

2 Enter ./server [start | stop | restart].

Start, stop, or restart the Administration Server using the command line
1 * cd /<the directory where FMS is installed>.

2 Enter ./adminserver [start | stop | restart].

Checking server status

View server events in the Windows Event Viewer
The Windows Event Viewer can be used for tracking Flash Media Server activity and debugging server applications.
The Event Viewer displays a list of events that the server generates. (The following steps are accurate if you are
working directly on the server. To view the events from another Windows machine, use Event Viewer to open a
remote connection to the server.)

1 From the Windows Start menu, select Settings > Control Panel > Administrative Tools > Event Viewer.

2 Select the Application panel.

3 Double-click an event generated by Flash Media Server to view details.

Check server health
FMSCheck is a command line utility program that can be used to diagnose and determine server status. The tool is
available for both Windows and Linux using different executable files. As a command line tool, FMSCheck is
completely scriptable using the language of your choice, such as Cscript, bash, C shell, or Python. FMSCheck
provides information about whether the server is running or not, what the response time is, and which fmscore
processes are not responding. A small video file for testing is included. The Users.xml file must be configured to
accept a connection from this tool (this configuration is required to use --allapps and its dependent commands).

When the tool connects to Flash Media Server, it does the following:

• Checks the connection to any instance of an application

• Checks all active instances of the server by connecting to those applications

• Can publish and play a stream

• Can play the available server-side stream for an application

Note: Currently, FMSCheck only supports RTMP connections and does not check for shared objects.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

63

FMSCheck commands and options

Option Description

--host <hostname> Required; tells the program where to connect the server. Example: --host localhost

--port <number> Port number is optional. The default value is 1935. Example: --port 1935

--app <app> Allows the program to connect to the application. Administrator must specify the applica-
tion. Example: --app app1/inst1

--allapps Queries the Administration Server for active instances and makes a connection to each
active instance. In this case, the administrator must use the --auser, --apswd, and -
- ahostport options in order to log in to the Administration Server. The administrator
must configure Users.xml to accept connections from this program. This command can take
time to finish; verify that the timeout value is adequate.

--help Displays Help for using FMSCheck.

--logfile <file> Allows the program to output response to a file. If this option is not specified, a result
cannot be provided. Example: --logfile output.log

--play <name> [start [duration]] Instructs the program to play video files. Options are start and duration.

Values for start and duration must be in positive numbers or 0 and represent the
number of seconds. The default value of start is any , which plays the file from the begin-
ning. The default value of duration is 1 second. You can specify all to play the entire file.
You cannot give the play and publish commands at the same time.
Example: --play foo 10 5

--publish <name> <duration>
[record|append]

Publishes files to the server. This command must be used along with --pubfile.

The duration parameter is required; only a positive number, zero, or all is allowed.

Both record and append are optional. If neither is specified, the default behavior is to
record. If the file already exists and record is used, the existing file is overwritten. After the
file is published, it is automatically played to verify the success of the publish operation.
Example: --publish foo -1

--pubfile <file> Specifies a filename. This command must be used with --publish. Specify the name of
the input video file residing on the client side, the name of the output file to be created at
on server side, and the duration.
Example: --pubfile input.flv --publish output 10

--parallel [<max>] Allows the program to play multiple applications at the same time. This command is used
with --allapps. If there is more than one application, tests are run on each application
serially (connect to the first application, run test, connect to the second application, run
test, and so on). Running parallel without specifying max tests every application in parallel.
However, if there is a large number of applications, running all of them in parallel may not
be desirable. Indicate the maximum number of applications that can be run in parallel by
specifying a value for max. For example, to run 10 tests in parallel, use the following:
--parallel 10

--stagger <sec> Inserts a pause between tests. This command is used along with --parallel. The value of
<sec> is in seconds, and the default value is 1 second. If you specify a very long stagger
time (longer than the duration of the test), then you are effectively running in serial mode.
Example: --stagger 2

--query <" "> Allows you to input your own string for special purposes, such as authentication. Example:
rtmp://host/app/inst?foo=abcd

--timeout <sec> Specifies a timeout value, in seconds. If the program does not receive a response from the
server within this interval, an error is returned.

fmscheck -v Prints a version string.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

64

Usage examples for Windows:

• * fmscheck.exe --host localhost --app app1 --logfile output.txt

• * fmscheck.exe --host localhost --app app1 --play foo 0 10 --logfile output.txt

• * fmscheck.exe --host localhost --app app1 --pubfile foo.flv --publish bar 10 --logfile

output.txt

• * fmscheck.exe --host localhost --allapps --auser admin --apswd admin --parallel 10 --

stagger 2 --timeout 100 logfile output.txt

All of the Windows examples can be adapted to Linux by using * ./fmscheck instead of * fmscheck.exe.

Checking video files

Checking FLV files created or modified with third-party tools
Third-party tools are available to create and modify FLV files, but some of the tools create files that do not comply
with the FLV standard. Common problems include bad timestamps in the FLV file, invalid onMetaData messages,
bad message headers, and corrupted audio and video. The FLVCheck tool can be used to analyze FLV files before
they are deployed on Flash Media Server. In addition, the tool can also add or update metadata to reflect file duration
correctly. The tool verifies that metadata is readable, specifies an accurate duration, and checks that the FLV file is
seekable by Flash Media Server. The tool supports unicode filenames.

Note: The FLVCheck tool does not correct FLV file content corruption. The tool does fix metadata by scanning the
Duration and Can Seek To End metadata fields. The tool can then merge the server metadata with the data present in
the file.

Checking other video files
Flash Media Server supports playback of H.264-encoded video and HE-AAC-encoded audio within an MPEG-4–
based container format. A subset of the MPEG-4 standards are supported. Any file with the Adobe extension .f4v is
part of the supported subset and can be delivered using Flash Media Server.

For MPEG-4–based container formats with extensions other than .f4v, use the FLVCheck tool to verify that the
server can play back your files.

Note: The FLVCheck tool does not correct corrupted H.264-encoded files or make any other fixes to MP4 files.

Check a video file with the FLVCheck tool
The FLVCheck tool is a command line program; the executable is named flvcheck.

1 Open your operating system’s command prompt and change directories to RootInstall/tools.

2 Use the following syntax to run the FLVCheck tool:

--auser <username> Specifies a user name for the Administration Server user. Example: --auser admin

--apswd <password> Specifies a password for the Administration Server. Example: --apswd admin

--ahostport <port> Specifies the Administration Server port number. If the port number is not specified in the
command line, the default port is 1111. Example: --ahostport 1111

Option Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

65

flvcheck --file <file ...>

For example, to check two files:

flvcheck -f abc.flv ../test/123.flv

The following table describes the command line options available.

3 If the FLVCheck tool finds no errors in the FLV file, the status code returned is 0. If there are one or more errors,
a positive number indicating the total number of invalid files found is returned. If a return code of -1 is returned, an
invalid command-line parameter was specified.

Errors and warnings are logged in a log file (stdout); errors and warnings are described in the sections FLVCheck
errors and FLVCheck warnings.

4 (FLV files only) If an error is returned from an FLV file due to a metadata error, you can use the tool to try to
correct the problem. Try the following:

a Use the -m option to try to fix the metadata in the file:

flvcheck -m <file> [-quiet] [-help]

b Use the -d option to change the duration field margin of error. The duration field in the metadata may be
inaccurate by a few seconds. For example, flvcheck -f abc.flv -d 5 would allow the metadata duration to
be inaccurate +/- 5 seconds.

Other types of errors cannot be fixed using the FLVCheck tool. MP4 files cannot be fixed using the FLVCheck
tool.

Option Description

-f [--file] file ... Specifies the path to the video file(s) being checked. Relative paths
may be used. (Avoid using the “\” character; try the “/” character
instead.)

-v [--version] Prints version information.

-n [--nobanner] Turns off header.

-h [--help] Provides a description of options and an example.

-d [--duration] Specifies the margin of error, in seconds, that FLVCheck reports. (The
default is 2 seconds.)

When validating metadata, the absolute difference between
metadata_duration and actual_duration is calculated
and compared against the margin specified in this command. If the
margin is exceeded, the server logs a warning that the metadata
duration is incorrect. If the margin has not been exceeded, nothing
will be logged.

To get the exact duration, specify -d 0.

-q [--quiet] Specifies that only the status code, not the text output, be returned.
The --help option overrides this option.

-s [--fixvideostall] Fix a stall in video playback (FLV only).

-u [--usage] Displays an example and information about command-line parame-
ters.

-m [--fixmeta] (FLV files only) If metadata tag is corrupted, creates a new copy of the
original FLV file in the same directory as the original, with corrected
metadata. (If the file contains no errors, a backup file is not created.)
Only the Duration and Can Seek To End metadata fields are corrected.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

66

FLVCheck errors
If an error is found, the error is logged to the stdout file in the following format: Date, Time, ErrorNumber,
ErrorMessage, and FileName. The possible error numbers, types of errors, and messages are as follows.

Error numbers Error type Error messages

-2 General Invalid file system path specified.

-3 General File not found.

-4 General Cannot open file.

-5 General File read error.

Flash Media Server cannot read the file, indicating that the encoding of part or all of the file is not
compatible with the codecs that are supported.

-6 General Cannot create corrected file.

This error occurs if you run the tool with the -m option set, but the tool cannot create a file with
corrected metadata.

-7 FLV Invalid FLV signature.

-8 FLV Invalid FLV data offset.

-9 FLV Invalid FLV message footer.

-10 FLV Unrecognized message type.

-11 FLV Found backward timestamp.

-12 FLV Unparsable data message.

-13 MP4 File does not contain a movie box.

This error occurs if the MP4 file is empty.

-14 MP4 File does not contain any valid tracks.

This error could occur if the MP4 file contains audio or video encoded with unsupported codecs.
For a list of supported codecs, see Streaming media.

-15 MP4 Too many tracks. Max is 64.

-16 MP4 Only one sample type allowed per track.

-17 MP4 Box is too large.

-18 MP4 Truncated box.

-19 MP4 Duplicate box.

-20 MP4 Invalid box version.

-21 MP4 Invalid movie time scale.

-22 MP4 Invalid number of data entries in box.

-23 MP4 Invalid sample size.

-24 MP4 Invalid chapter time.

-25 MP4 Too many tag boxes. Max is 64.

-26 General File appears to be FLV with wrong extension.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

67

FLVCheck warnings
Generally, warnings are informative and are not fatal errors; Flash Media Server will ignore the error that caused the
warning and continue to load and play back the video or audio file, but you may experience problems with playback.
Warnings are logged to the stdout file in the following format: Date, Time, Warning Number, Warning Message, and
File Name.

Clearing the edge server cache

Deleting files from the edge server cache
Edge servers do not delete content automatically; you must delete unused files to manage disk usage. Edge servers
update the timestamp of a file each time the file is used. You can use the timestamp to determine when a cached file
was used.

Manage the edge server cache in Windows
You can create a weekly scheduled task to clear the edge server cache.

1 Create a cache.bat file to empty the cache directory. The entry in the cache.bat file has the following syntax:

del /Q /S <cache_directory>*.*

2 Run the cache.bat file and verify that it deletes files in the cache directory.

Warning number Warning type Message

-100 General Metadata duration is incorrect.

-101 FLV canSeekToEnd is false.

-102 MP4 Unrecognized box.

-103 MP4 Found incomplete track.

-104 MP4 Found duplicate video track. Ignoring...

-105 MP4 Found duplicate audio track. Ignoring...

-106 MP4 Found duplicate data track. Ignoring...

-107 MP4 Track has unsupported sample type.

Flash Media Server ignores (will not play back) tracks that are encoded with unsupported codecs.
For a list of supported codecs, see Streaming media.

-108 MP4 Invalid video codec.

This warning indicates that a track has an invalid video codec. Flash Media Server cannot play back
the track. For a list of supported codecs, see Streaming media.

-109 MP4 Invalid audio codec.

This warning indicates that a track has an invalid audio codec. Flash Media Server cannot play back
the track. For a list of supported codecs, see Streaming media.

-110 FLV Video may appear stalled due to lack of audio data.

-111 MP4 File has unsupported metadata format.

-112 MP4 Box has extraneous bytes at end.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

68

The directory structure remains and any files currently locked by the edge server are not deleted; this is expected
behavior.

3 Select Control Panel > Scheduled Tasks > Add Scheduled Task.

4 Select cache.bat as the new file to run.

5 Replicate this procedure on each edge server.

Manage the edge server cache in Linux
1 Create a shell script named cache.sh to empty the cache directory. The cache.sh script has the following syntax:

find <cache_directory> -name “*.flv” -exec rm-f{}\;
find <cache_directory> -name “*.mp3” -exec rm-f{}\;
find <cache_directory> -name “*.mp4” -exec rm-f{}\;

Note: You can add any additional file types to the script.

2 Ensure the script is executable by running the following command:
$ chmod 700 cache.sh

3 Run cache.sh to verify that it deletes the correct files in the cache directory.

4 Use the cron utility to schedule cache.sh to run. (For details about the cron utility, see the documentation for
your Linux distribution.)

Managing the server on Linux
Use the fmsmgr utility to perform basic management tasks for the Flash Media Administration Server running on
Linux systems, such as starting and stopping the server and services. You must be a root user to use the fmsmgr
utility.

For tasks not listed in the following table, such as adding users or checking the status of applications, use the Admin-
istration Console. Although you do not need to be a root user to use the Administration Console, the Administration
service itself does need to be started by a root user using the fmsmgr utility before anyone can use the Administration
Console.

Note: Running multiple Flash Media Server services concurrently is not supported.

Syntax

fmsmgr server <service_name> <cmd>

Command Description

fmsmgr adminserver start|stop|restart Starts, stops, or restarts the Flash Media Administration Server.

fmsmgr clearautostart Sets the Flash Media Administration service to start manually. The service_name is
the name of the server you selected during installation. If no name is specified, the
action is performed on the default server. If the default service_name does not
exist, the command fails.

fmsmgr list Lists all the services installed, including Administration services, with additional
information about services that are currently running.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

69

fmsmgr remove Removes the Flash Media Server service from the fmsmgr tables. If you remove a
server service, the corresponding Administration service is also removed.

Warning: Use this command only if you want to uninstall the server service; you still
need to manually remove the installed files.

fmsmgr add service_name install_dir Add a Flash Media Server service to the fmsmgr tables. service_name is the name
of the server you select. If service_name already appears in the fmsmgr tables, the
old entry is updated with the new. install_dir is the absolute directory path
where you installed Flash Media Server.

fmsmgr server service_name restart Stops a running Flash Media Server service and restarts it. If no name is specified, the
action is performed on the default server. If the default service_name doesn’t exist,
the command fails.

fmsmgr server service_name stop Stops the specified Flash Media Server service. service_name is the name of the
server you selected during installation. If no name is specified, the action is
performed on the default server. If the default service_name doesn’t exist, the
command fails.

fmsmgr server service_name start Starts the Flash Media Server service. service_name is the name of the server you
selected during installation.

fmsmgr setadmin service_name Changes the default Administration service. service_name is the name of the
server you selected during installation. The Administration service name is the same
as the Flash Media Server service name. Any installed Administration service can be
used to administer one or more servers. Only one Administration service can be
running at a time.

fmsmgr getadmin Gets the name of the default Administration service.

fmsmgr setautostart service_name Sets the Flash Media Server service to start automatically when the system is started.
service_name is the name of the server you selected during installation. If no name
is specified, the action is performed on the default server. If the default
service_name doesn’t exist, the command fails.

fmsmgr clearautostart service_name Sets the Flash Media Administration service to start manually. The service_name is
the name of the server you selected during installation. If no name is specified, the
action is performed on the default server. If the default service_name does not
exist, the command fails.

fmsmgr suggestname Suggests a service name that does not already appear in the fmsmgr tables.

Command Description

70

Chapter 7: Using the Administration API

Working with the Administration API

About the Administration API
Use the Administration API to monitor, manage, and configure the server from an Adobe Flash Player or Adobe AIR
client over RTMP or RTMPE or from a web client over HTTP. The Flash Media Server Administration Console was
built using the Administration API. The API is described in detail in Adobe Flash Media Server Administration API
Reference.

Here are a few important tips for working with the Administration API:

• Both Adobe Flash Media Server and Flash Media Administration Server must be running.

• This document assumes that you have not changed the default port number (1111) for the Administration
Server; if you have, use your valid port number in all examples.

• If you do not specify an optional parameter, a default value may be used depending on the method. For example,
if you do not specify a virtual host in the scope parameter, it is assumed that you want to perform the command on
the virtual host to which you connected when you logged in to Flash Media Server.

• By default, administrators are logged in to the “_defaultRoot_” adaptor. When logging in to a virtual host not on
the default adaptor, virtual-host administrators must specify the name of the adaptor. For example, when logging in
(over RTMP using NetConnection) to a virtual host on the adaptor _secondAdaptor_, the administrator JLee
would enter the following information for the administrator user name parameter in the method call:
secondAdaptor/JLee.

Set permissions for Administration API method calls over HTTP
Note: You do not need to set permissions to call methods over RTMP.

1 Open the fms.ini file in the RootInstall/conf folder.

2 Make sure that the USERS.HTTPCOMMAND_ALLOW parameter is set to true.

3 Open the Users.xml file in the RootInstall/conf folder.

4 In the <Allow> element, enter method names in a comma-delimited list to allow HTTP requests to execute
Administration API calls. For example, the following code allows the ping() and changePswd() methods:

<AdminServer>
<HTTPCommands>

<Enable>${USERS.HTTPCOMMAND_ALLOW}/Enable>
<Allow>ping,changePswd</Allow>
<Deny>All</Deny>
<Order>Deny,Allow</Deny>

</HTTPCommands>
</AdminServer>

Note: There are additional XML elements in the Users.xml file that give you finer control over permissions. For more
information, see XML configuration files reference.

5 Save the file and restart Flash Media Administration Server.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

71

Call an Administration API method over HTTP
1 Verify that Flash Media Administration Server is running.

2 Open a browser window and enter the following in the address bar:
http://localhost:1111/admin/ping?auser=username&apswd=password

If the web browser is on a different computer than Flash Media Server, use the server address instead of
localhost. Substitute your administrator user name and password, which are located in the fms.ini file.

Note: You can construct an Administration API call from any language that can send HTTP requests. This example
uses a web browser because it’s the simplest client and good for testing purposes.

3 The server sends the XML results back to the browser:

<?xml version="1.0" encoding="utf-8" ?>
<result>

<level>status</level>
<code>NetConnection.Call.Success</code>
<timestamp>10/3/2007 05:31:01 PM</timestamp>

</result>

Constructing an HTTP request string
Many Administration APIs expect one or more parameters in addition to auser and apswd. Parameters passed in
an HTTP request must adhere to the following formatting rules:

• Name the parameters in the string. For example, the following code calls the addAdmin() method:

http://localhost:1111/admin/addAdmin?auser=adminname&apswd=adminpassword&username="joe"&pass
word="pass123"&vhost="_defaultRoot_/foo.myCompany.com"

• Strings are passed as literals surrounded by quotation marks. You can use either single quotation marks (') or
double quotation marks (").

"Hello World"
'String2'

The only exceptions are the auser and apswd parameters, which should be passed without quotation marks.

• Numbers are passed as either integer or floating-point literals.

245
1.03
-45

Note: When a number is used for an application name, the application name must be included within quotation
marks (" ") for methods such as reloadApp() and unload App() to work properly.

• Arrays are passed as comma-separated values enclosed by square brackets.

[1,2,3,4]
['abcd',34,"hi"]
[10,20,[31,32],40]

• Objects are passed as inline object literals.

{foo:123,bar:456}
{user:"Joe",ssn:"123-45-6789"}

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

72

Call Administration API methods over RTMP or RTMPE
To call the Administration API over RTMP or RTMPE, you need a Flash Player or AIR client.

Note: To call the Administration API over RTMPE, follow the instructions below, but change the protocol in the example
NetConnection.connect() call to RTMPE.

1 In the client application, create a NetConnection to the Flash Media Administration Server, passing in three
parameters: the URI of the Administration Server, an administrator user name, and an administrator password.
Only valid administrators, as defined in the Users.xml configuration file, can connect to the server.

The following code creates a NetConnection for the administrator MHill with password 635xjh27 to the server
on localhost:

ncAdmin = new NetConnection();
ncAdmin.connect("rtmp://localhost:1111/admin", "MHill", "635xjh27");

Note: If you want to connect to a virtual host, specify the virtual host’s domain name or IP address as part of the
URI—for example, rtmp://www.myVhost.com/admin:1111.

2 Call the NetConnection.call() method and pass it the Administration API method, a response object (if
needed) and any parameters (if needed):

ncAdmin.call("getAppStats", new onGetAppStats(), "vod");

The getAppStats() method returns performance data for an application running on the server; the response
object onGetAppStats() captures the result of the call; and vod is the name of the application instance from
which to retrieve statistics.

3 Define a function to handle the information object returned by the Administration API method.

The data is returned to the handler function in an information object. All information objects have level, code,
and timestamp properties. Some information objects have a data property (containing return data, often in an
object or array) and description and details properties, which typically provide information about errors.

Create your first application
This section contains the code for a simple Flash application that calls the getAppStats() method.

To call Administration APIs over RTMP, you need a Flash Player or AIR client. The following sample is built in Flash.

Note: You can call Administration APIs from applications written in ActionScript 1.0, ActionScript 2.0, or
ActionScript 3.0.

1 In Flash, create an application with the following elements:

• An input text field named appName

• A button called button_btn

• A multiline, dynamic text field called outputBox

• A scroll component attached to the outputBox text field

Note: Since this is a Flash Media Server application, you must create an application directory with the application
name in the RootInstall\applications directory. <verify then add this back -sr>

2 Enter the following code on frame 1 of a Flash file:

/** Establishes the connection to Flash Media Server **/

ncAdmin = new NetConnection();
// Replace admin_name and admin_pass with your

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

73

// administrator name and password.
ncAdmin.connect("rtmp://localhost:1111/admin","admin_name","admin_pass");

/** Makes the API call, for example, "getAppStats" **/
function doGetAppStats() {

function onGetAppStats(){
this.onResult = function(info){

if (info.code != "NetConnection.Call.Success"){
outputBox.text = "Call failed: " + info.description;

} else {
outputBox.text = "Info for "+appName.text+ " returned:" + newline;
printObj(info, outputBox);

}
};

}
// Calls the getAppStats() API on the name of application
// in the input text field
// places the response in the onGetAppStats funtion
ncAdmin.call("getAppStats", new onGetAppStats(), appName.text);

}

function printObj(obj, destination){
for (var prop in obj) {

destination.text += "\t";
destination.text += prop + " = " + obj[prop] + newline;
if (typeof (obj[prop]) == "object") { // recursively call printObj

printObj(obj[prop], destination);
}

}
}

button_btn.onRelease = function(){
doGetAppStats();

}

3 Before running this sample application, start another Flash Media Server application.

4 Open the Administration Console to verify that the application you started in step 3 is running.

5 Run the sample Flash application and enter the name of the Flash Media Server application you started in step 3
in the input text field.

Method summary

Methods for monitoring the server
Queries let you monitor Flash Media Server, its applications, and specific instances of its applications. The following
table lists the methods you can use to monitor the server.

Method Description

approveDebugConnection() Approves a pending debug session’s request to connect to a selected application.

getActiveInstances() Returns an array of strings that contains the names of all running application instances on the
connected virtual host.

getActiveVHosts() Returns an array of active virtual hosts.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

74

getActiveVHostStats() Returns performance statistics for the active virtual hosts.

getAdaptors() Returns an array of adaptor names.

getAdminContext() Returns the administrative context for the administrator (administrator type, name of adaptor,
and name of the virtual host).

getAdmins() Returns all the administrators on the Flash Media Server.

getApps() Returns an array of strings that contains the names of all the applications that are installed.

getAppStats() Returns aggregate information of all instances for an application.

getFileCacheStats() Returns data about the file cache.

getGroupMembers() Returns a list of the group members for a particular group.

getGroupStats() Returns statistics for a particular group connection.

getGroups() Returns a list of the group connections for a particular application instance.

getInstanceStats() Returns detailed information about a single running instance of an application.

getIOStats() Returns the I/O information: bytes in, bytes out, and so on.a

getLicenseInfo() Returns license key information.

getLiveStreams() Returns a list of all live streams currently publishing to a particular application.

getLiveStreamStats() Returns detailed information about a live stream.

getMsgCacheStats() Returns server TCMessage cache statistics.

getNetStreams() Returns a list of all network streams that are currently connected to the application.

getNetStreamStats() Returns detailed information about a specific network stream.

getRecordedStreams() Returns an array containing the name of all the recorded streams currently playing from a partic-
ular instance of an application.

getRecordedStreamStats() Returns detailed information about a recorded stream.

getScriptStats() Gets the performance data for a script running on the specified instance of an application.

getServerStats() Retrieves the server status and statistics about the operation of the server, including the length of
time the server has been running and I/O and message cache statistics.a

getServices() Returns an array containing the names of all the services currently connected to Flash Media
Server.

getSharedObjects() Returns a list of all persistent and nonpersistent shared objects that are currently in use by the
specified instance of an application.

getSharedObjectStats() Returns detailed information about a shared object.

getUsers() Returns a list of all users who are currently connected to the specified instance of an application.

getUserStats() Returns detailed information about a specified user.

getVHosts() Returns an array of virtual hosts defined for the specified adaptor.

getVHostStats() Returns statistics for a virtual host.

ping() Returns a status string indicating the condition of the server.

Method Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

75

For more information, see Adobe Flash Media Server Administration API Reference.

Administrative methods
Administrative methods let you add administrative users, and start and stop the server, virtual hosts, and applica-
tions. The following table lists the methods you can use to administer the server.

For more information, see Adobe Flash Media Server Administration API Reference.

Methods for configuring the server
Configuration methods let you view and set values for server configuration keys.

For more information about configuration keys, see the entries for getConfig2() and setConfig2() in Adobe
Flash Media Server Administration API Reference.

a. Only server administrators can use this method. Virtual host administrators cannot use these methods. In some cases, virtual
administrators can use a method with restrictions; these restrictions are described in the dictionary entry for the method.

Method Brief description

addAdmin() Adds an administrator to the system.a

a. Only server administrators can use this method. Virtual host administrators cannot use these methods. In some cases, virtual host
administrators can use a method with restrictions; these restrictions are described in the dictionary entry for the method.

addApp() Adds a new application.

addVHostAlias() Adds an alias to a virtual host.

changePswd() Changes the password for an administrator in the system.

gc() Forces garbage collection of server resources.a

reloadApp() Unloads an instance of an application if it is loaded, and then reloads the instance.

removeAdmin() Removes an administrator from the system.a

removeApp() Removes an application or an instance of an application.

removeVHostAlias() Removes an alias from a virtual host.

restartVHost() Restarts a virtual host.

startServer() Starts or restarts Flash Media Server.a

startVHost() Starts the specified virtual host if it stops. Enables a new virtual host if the virtual host directories
have been created in the file system.a

stopServer() Shuts down the Flash Media Server.a

stopVHost() Stops an added virtual host (not _defaultVHost_).

unloadApp() Unloads all instances of an application or one instance of an application. Disconnects all users.

Method Description

getConfig2() Returns configuration information for the specified configuration key.

setConfig2() Sets a value for a specified configuration key.

76

Chapter 8: XML configuration files
reference
Edit the configuration files in the RootInstall/conf directory to configure the server. For more information, see
Editing configuration files.

Important: Some XML elements should not be configured without contacting Adobe Support. These elements are
marked with an Important note.

Adaptor.xml file
The Adaptor.xml file is the configuration file for individual network adaptors. It determines the number of threads
that can be used by the adaptor, the communications ports the adaptor binds to, and the IP addresses or domains
from which the adaptor can accept connections.

You can also implement SSL with the Adaptor.xml file, if you want to use different digital certificates for different
adaptors.

Each adaptor has its own directory inside the server’s conf directory. The name of the directory is the name of the
adaptor. Each adaptor directory must contain an Adaptor.xml file.

For example, the default adaptor included with the server at installation is named _defaultRoot_, and its directory is
found in the conf/ directory. To change an adaptor’s settings, edit the elements in its Adaptor.xml file.

To see the element structure and default values in the Adaptor.xml file, see the Adaptor.xml file installed with Adobe
Flash Media Server in the RootInstall/conf/_defaultRoot_ directory.

Summary of elements

Adaptor.xml element Description

Adaptor Root element; contains all the other adaptor configuration elements.

Allow Identifies the specific hosts from which clients can connect to the server.

Deny Identifies those hosts whose clients’ attempts to connect to the server(s) will be rejected.

Edge Identifies an edge to configure for HTTP tunneling.

Enable Enables or disables tunneling connections into this application.

EnableAltVhost Determines if an alternate virtual host may be specified as a part of the RTMP URL as query parameter.

HostPort Specifies the IP address and port(s) to bind to.

HostPortList Container element; comprised of a list of HostPort elements.

HTTPIdent Configures the server to respond to or reject an HTTP identification request from a client.

HTTPIdent2 Configures the server to respond to or reject a special HTTP request from a client before attempting an
RTMPT connection to Flash Media Server.

HTTPNull Configures the server to respond to or reject an HTTP GET request for the “/” resource from a client.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

77

Adaptor
Root element. Contains all the elements in the Adaptor.xml file.

HTTPTunnel Container element; the elements in this section configure the incoming HTTP tunneling connections.

HTTPUserInfo Container element; the elements in this section configure the absolute path to XML files and the cache
settings.

IdleAckInterval Specifies the maximum time the server may wait before it returns an ack (acknowledgement code) for a
client idle post.

IdlePostInterval Specifies the interval at which the client should send idle posts to the server to indicate that the player
has no data to send.

IdleTimeout Specifies the maximum inactivity time, in seconds, for a tunnel session before it is closed.

MaxFailures Specifies the maximum number of failures an edge server may incur before restarting.

MaxSize Specifies maximum number of HTTP requests the server keeps in the cache.

MaxWriteDelay Specifies how long the server waits for a write.

MimeType Specifies the default MIME type header sent on tunnel responses.

NeedClose Specifies whether HTTP 1.0 non-keepalive connections are to be closed once the response is written.

NodeID Specifies a unique node identification to support the implementation of load balancers.

Order Specifies the order in which to evaluate the Allow and Deny elements.

Path Specifies the absolute path of the folder where the server looks for XML files supported by HTTPUserInfo.

RecoveryTime Specifies the wait time for an edge server to pause after failing, before it restarts.

Redirect Specifies whether or not the adaptor redirects unknown requests to an external server.

ResourceLimits Container element; contains elements that configure the resources for an edge server.

RTMP Container element; contains details and configurations for different versions of RTMP.

RTMPE Specifies if enhanced (encrypted) RTMP can be used.

SetCookie Specifies whether the adaptor sets a cookie.

SSL Container element; contains elements to configure Flash Media Server as an SSL (Secure Sockets Layer)
client for incoming SSL connections.

SSLCertificateFile Specifies the name of the directory containing one or more CA certificates.

SSLCertificateKeyFile Specifies the name of a file that contains one or more CA certificates in the PEM encryption format.

SSLCipherSuite Specifies the encryption ciphers that Flash Media Server uses to secure incoming connections.

SSLPassPhrase Specifies the passphrase to use for decrypting the private key file. If the private key file is not encrypted,
leave this tag empty.

SSLServerCtx Container element; contains elements to configure Flash Media Server as an SSL (Secure Sockets Layer)
client for incoming SSL connections.

SSLSessionTimeout This element specifies in minutes how long a SSL session remains valid.

UpdateInterval Specifies how often the server refreshes the cache content for HTTPUserInfo, in milliseconds.

WriteBufferSize Specifies the size in kilobytes of the write buffer.

Adaptor.xml element Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

78

Allow
A comma-delimited list of host names, domain names, and/or full or partial IP addresses from which clients can
connect to the server.

Example

<Allow>foo.yourcompany.com, adobe.com, 10.60.1.133, 10.60</Allow>

See also

Deny, Order

Deny
A comma-delimited list of host names, domain names, and/or full or partial IP addresses from which clients cannot
connect to the server.

Example

<Deny>foo.yourcompany.com, adobe.com, 10.60.1.133, 10.60</Deny>

See also

Allow, Order

Edge
Container element.

Contains elements that specify an edge to configure for HTTP tunneling. Edges are defined in HostPort elements
in the HostPortList container. Each edge can have different HTTPTunnel configurations.

Attribute

name A name identifying an edge. Use the name specified in the HostPort element.

Contained elements

Enable, IdlePostInterval, IdleAckInterval, MimeType, WriteBufferSize, SetCookie, Redirect,
NeedClose, MaxWriteDelay

Enable
Specifies whether or not to allow HTTP tunneling connections.

These are the possible values for the Enable element:

Important: Only one application can use a port at a time. For example, if you configure Flash Media Server to use port
80 for HTTP tunneling, the web server cannot use port 80.

Value Description

true Allow all HTTP tunneling connections. This is the default value.

false Disallow all HTTP tunneling connections.

http1.1only Allow only HTTP 1.1 tunneling connections.

keepalive Allow HTTP 1.1 or HTTP 1.0 keepalive connections.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

79

Example

<Enable>true</Enable>

See also

IdlePostInterval, IdleAckInterval, MimeType, WriteBufferSize, SetCookie, Redirect, MimeType,
MaxWriteDelay

EnableAltVhost
Determines if an alternative virtual host may be specified as a part of the RTMP URL as query parameter
rtmp://host1/app/?_fcs_vhost=host2. This does not apply to administrative connections, which are always on by
default. The default value is false.

<EnableAltVhost>false</EnableAltVhost>

See also

HTTPTunnel, RTMP, SSL

HostPort
Specifies to which IP address and port(s) an adaptor binds. If you want to bind an adaptor to multiple IP addresses,
add a HostPort element for each IP address. The format is IP:port,port,...,port. To bind to any IP address,
don’t specify anything in front of the colon.

This element is exposed as the ADAPTOR.HOSTPORT parameter in the RootInstall/conf/fms.ini file. The default value
is :1935,80,-443. This value instructs the adaptor to bind to any IP address on ports 1935, 80, and 443, where 443
is designated as a secure port that will only receive RTMPS connections.

When assigning port numbers, keep in mind the following:

• There is a risk in assigning more than one adaptor to listen on the same IP:port pair. If another process tries to
bind to the same IP:port combination, a conflict results. To resolve this conflict, the first adaptor to bind to the
specified HostPort wins. Flash Media Server logs a warning in the Access log file indicating that the specified
IP:port is in use.

• Only one application can use a port at a time. For example, if you configure Flash Media Server to use port 80
for HTTP tunneling, the web server cannot use port 80.

Attributes

name A name to identify this HostPort element. If there are multiple HostPort elements, each must have a
different name.

ctl_channel The internal port that an FMSEdge (fmsedge in Linux) process listens on. When an FMSCore
process is started (fmscore in Linux), it connects to an FMSEdge process on this internal port to establish a control
channel. Each HostPort element corresponds to an FMSEdge process. If there are multiple HostPort elements, each
must have a different ctl_channel.

80

Example

The following HostPort value instructs the adaptor to bind to the IP address 127.0.0.1 on ports 1935, 80, and 443,
where 443 is designated as a secure port that will only receive RTMPS connections. (A port is marked as secure by
specifying a minus sign in front of the port number.) RTMPS connection attempts to ports 1935 or 80 will not
succeed. The client will attempt to perform an SSL handshake that the server will fail to complete. Similarly, a regular
RTMP connection to port 443 will fail because the server will try to perform an SSL handshake that the client will
fail to complete.

<HostPort>127.0.0.1:1935,80,-443</HostPort>

If there is no colon in the HostPort value, or there is a colon with no ports specified, the data is assumed to be an
IP address and binds to port 1935. The following values instruct the adaptor to bind to IP 127.0.0.1 on port 1935:

<HostPort>127.0.0.1</HostPort>
<HostPort>127.0.0.1:</HostPort>

See also

HostPortList

HostPortList
Container element.

The elements in this container list HostPort elements associated with this adaptor.

Example

<HostPortList>
<HostPort name="edge1" ctl_channel=":19350">${ADAPTOR.HOSTPORT}</HostPort>
<HostPort name="edge2" ctl_channel=":19351">:1936,-444</HostPort>

</HostPortList>

Contained elements

HostPort

HTTPIdent
Configures the server to respond to or reject an HTTP identification request from a client. For a response to be
returned, the HTTPIdent function must be enabled and the client must do a POST or GET for "/fcs/ident" resource.

Attributes

enable A Boolean value specifying whether the server responds to an HTTP identification request (true) or not
(false). The default value is false. When the enable attribute is set to true, all elements in the HTTPIdent section
are returned as a response. The entire response is enclosed in <FCS></FCS> elements, which are added by the server.
If the HTTPIdent function is enabled, but no content is specified, the <FCS></FCS> response is returned without
content.

Example

<HTTPIdent enable="true">
<Company>Adobe System Inc</Company>
<Team>Flash Media Server</Team>

</HTTPIdent>

The following is an example request:

http://serverIP:1935/fcs/ident

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

81

The following is an example response:

<fcs>
<Company>Adobe System Inc</Company>
<Team>Flash Media Server</Team>

</fcs>

See also

HTTPNull, HTTPTunnel, HTTPUserInfo

HTTPIdent2
Configures the server to respond to or reject a special HTTP request from the client before client attempts to make
a RTMPT connection to Flash Media Server. For a response to be returned, the HTTPIdent2 function must be
enabled. This function is available when using Flash Player Update 3 or later.

RTMPT (Tunneled Real-Time Messaging Protocol) can have difficulties working with load balancers. If a single
RTMPT session consists of multiple socket connections, each connection may be sent to any one of many Flash
Media Servers behind load balancers. This causes the session to be split across machines. Using <HTTPIdent2>
enables Flash Player to send a special HTTP request before connecting to Flash Media Server.

Attributes

enabled A Boolean value specifying whether the server responds to a special HTTP identification request before
making a RTMPT connection (true) or not (false). This feature is enabled by default, even if the <HTTPIdent2>
tag or the enabled attribute is missing. The IP address can be explicitly configured and does not need to be the IP
of the Flash Media Server machine. (This allows RTMPT connections to be redirected to a different server.) If the
tag is left empty, the IP address is determined automatically.

If you are running Flash Media Server on Linux and have enabled IPv6 but are using an IPv4 hostname (a hostname
that resolves to IPv4), then use this tag to resolve RTMPTE and RTMPE connections more quickly: either set the
enabled attribute to false, or set it to true and set the value of the tag to the IP address to which you’re connecting.

Example

<HTTPIdent2 enabled="true">10.133.128.71</HTTPIdent2>

See also

HTTPNull, HTTPTunnel, HTTPUserInfo

HTTPNull
Configures the server to respond to or reject an HTTP GET request for the “/” resource from a client. When the
enable attribute is set to true, an HTTP 404 response is sent in response to an HTTP GET request. By default, the
HTTPNull function is disabled.

Attributes

enable A Boolean value specifying whether the server responds to an HTTP identification request (true) or not
(false). The default value is false. When the enable attribute is set to true, all elements in the HTTPIdent section
are returned as a response. The entire response is enclosed in <FCS></FCS> elements, which are added by the server.
If the HTTPIdent function is enabled but no content is specified, the <FCS></FCS> response is returned without
content.

Example

<HTTPNull enable="true">

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

82

See also

HTTPIdent, HTTPTunnel, HTTPUserInfo

HTTPTunnel
Container element.

The elements in this section configure the incoming HTTP tunneling connections to the adaptor. Each edge can
have different HTTPTunnel configurations.

Note: Only one application can use a port at a time. For example, if you configure Flash Media Server to use port 80 for
HTTP tunneling, the web server cannot use port 80.

Contained elements

Enable

HTTPUserInfo
Container element.

The elements in this section configure the absolute path to XML files and the cache settings.

Contained elements

Path, MaxSize, UpdateInterval

IdleAckInterval
Specifies the maximum time in milliseconds the server waits before it sends an acknowledgement code for a client
idle post. An acknowledgement code is a transmission control character used to indicate that a transmitted message
was received uncorrupted and without errors, and that the receiving server is ready to accept transmissions. The
default value is 512 milliseconds, which provides medium latency.

The values for this element and the IdlePostInterval element affect the latency observed by a client tunneling
into the server. These elements should be configured at the same time.

Lower values reduce latency, but increase the network bandwidth overhead. Applications desiring low latency may
configure the combination of values 128/256 for the IdlePostInterval and IdleAckInterval elements. For
applications not sensitive to high latencies, use the combination 1024/2048.

<IdleAckInterval>512</IdleAckInterval>

See also

IdlePostInterval, IdleTimeout

IdlePostInterval
Specifies the interval in milliseconds at which the client sends idle posts to the server to indicate that Flash Player
has no data to send.

The default settings for the IdleAckInterval and IdlePostInterval elements provide medium latency and are
set to 512/512 milliseconds.

Low values reduce the latency but increase the network bandwidth overhead. Applications desiring low latency may
configure the combination of values 128/256 for IdlePostInterval and IdleAckInterval elements. Applications
not liable to high latencies can use the configuration 1024/2048.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

83

Example

<IdlePostInterval>512</IdlePostInterval>

See also

IdleAckInterval, IdleTimeout

IdleTimeout
Specifies the maximum inactivity time, in seconds, for a tunnel session before it is closed.

When a client using HTTP tunneling disconnects unexpectedly, their session may remain open for a long period of
time after disconnecting. The value of IdleTimeout indicates the maximum time, in seconds, that such a session
may remain idle before it will be automatically disconnected. An IdleTimeout of -1 indicates that idle tunnel
sessions will not be disconnected. The default setting for IdleTimeout is 8 seconds. Values that are too low may
cause clients with very high latencies to become disconnected. Values that are too high may result in disconnected
sessions consuming server resources for longer than necessary.

Example

<IdleTimeout>8</IdleTimeout>

See also

IdlePostInterval, IdleAckInterval

MaxFailures
Specifies the maximum number of failures an edge server may incur before it restarts.

Default number of failures is 2.

Example

<MaxFailures>2</MaxFailures>

See also

IdleAckInterval

MaxSize
Specifies the maximum number of HTTP requests the server keeps in the cache. When the cache size reaches the
maximum size, the server reduces the cache. By default, the value is 100.

Example

<MaxSize>100</MaxSize>

See also

Path, UpdateInterval

MaxWriteDelay
The HTTP tunneling protocol ensures that a server will be able to write every four seconds. Occasionally, when
connections close under abnormal conditions, the notification may not reach the server, which may continue to
place writes in a queue.

Anomalous connections are closed after the specified wait time. The default wait time is 40 seconds.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

84

Example

<Edge name="Edge1">
<Enable>true</Enable>
<IdlePostInterval>512</IdlePostInterval>
<IdleAckInterval>512</IdleAckInterval>
<MimeType>application/x-fms</MimeType>
<WriteBufferSize>16</WriteBufferSize>
<SetCookie>false</SetCookie>
<Redirect enable="false" maxbuf="16384">

<Host port="80">:8080</Host>
</Redirect>
<NeedClose>true</NeedClose>
<MaxWriteDelay>40</MaxWriteDelay>

</Edge>

You may want to use this sample code as a template for configuring each edge server.

See also

HTTPTunnel

MimeType
Specifies the default MIME (Multipurpose Internet Mail Extensions) type header sent on tunnel responses.

The server generally uses the MIME type specified by the incoming requests. The server uses the entry for the
MIMEType element only if it is unable to determine the MIME type from the incoming requests.

Example

<MimeType>application/x-fcs</Mimetype>

See also

HTTPTunnel

NeedClose
A Boolean value specifying whether or not HTTP 1.0 non-keepalive connections are closed once the response is
written. The default value is true, which closes the connections.

Example

<NeedClose>true</NeedClose>

See also

MaxWriteDelay

NodeID
Specifies a unique node identification that supports the implementation of load balancers.

If the NodeID element is used, a following string of up to nine characters is prefixed to the tunnel session IDs and
can be used by the load balancers to uniquely identify each node in the cluster.

The ID must contain URL-safe characters: alphanumerics A-Z, a-z, and 0-9, and the special characters $-_.+!*'()

See also

HTTPTunnel

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

85

Order
Specifies the sequence in which the server evaluates the Allow and Deny elements. The following is the default
sequence:

<Order>Allow,Deny</Order>

The default sequence indicates that access to a server is denied unless it is specified in the Allow element.

The alternative sequence Deny,Allow indicates that access to a server is allowed unless specified in the Deny element
and not specified in the Allow element.

Example

The following is the default sequence:

<Order>Allow,Deny</Order>

See also

Allow, Deny

Path
Specifies the absolute path of the folder where the server looks for XML files. By default, it is set to uInfo/ in the FMS
install directory.

See also

MaxSize, UpdateInterval

RecoveryTime
Specifies the number of seconds an edge server waits before restarting after a failure.

When an edge server fails, it waits for the interval specified here before it restarts. The wait time is specified in
seconds.

The number of failures is specified by the MaxFailures element.

Example

<RecoveryTime>30</RecoveryTime>

See also

MaxSize

Redirect
Specifies whether or not the adaptor redirects unknown requests to an external server.

Note: For redirection to work, HTTP tunneling must be enabled.

An unknown request may connect only when it is the first request on a newly accepted connection. At any other
time, the request is considered an error and the connection is closed.

The maxbuf attribute determines how big the IO buffers are. Flow control automatically handles the request when
the bandwidth resources for producers and consumers differ widely. Flow control begins when the buffer in either
direction fills up.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

86

Example

This example instructs the server to redirect unknown requests to the specified redirect host.

<Redirect enable="false" maxbuf="16384">
<Host port="80">:8080</Host>
<Host port="443">:8443</Host>

</Redirect>

See also

MaxWriteDelay, NeedClose

ResourceLimits
Container element.

The elements in this container configure the resource limits for the edge server.

Contained elements

MaxFailures, RecoveryTime

RTMP
Container element.

The elements in this container determine if encrypted RTMP (RTMPE) and encrypted tunneling RTMP (RTMPTE)
can be used.

Contained elements

RTMPE

RTMPE
Specifies if encrypted RTMP (RTMPE) can be used. RTMPE is the encrypted RTMP protocol covering both RTMPE
and RTMPTE. This element is enabled by default; setting enabled to false will not allow RTMPE or RTMPTE on
this adaptor.

Example

<RTMPE enabled="true"></RTMPE>

See also

RTMP

SetCookie
Specifies whether or not the server sets a cookie.

If the server does not have an externally visible IP address, then for HTTP tunneling to work, you should enable
cookies when you deploy servers behind a load balancer. The load balancer checks the cookie and sends requests
with this cookie to the same server. Keep in mind that the cookie adds to the HTTP header size and increases the
bandwidth overhead.

Note: For tunneling connections, cookies are currently supported only on Flash Player 9.0.28 or later, in Windows only.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

87

Example

<SetCookie>false</SetCookie>

See also

NodeID

SSL
Container element. For additional information, see Configure SSL.

The elements in this section configure the incoming connections via the Secure Sockets Layer protocol, known as
SSL. The SSL elements in Adaptor.xml configure the server to act as an SSL-enabled server to accept incoming SSL
connections.

You need to acquire a digital certificate to use SSL. Once you get your SSL certificate through a certificate authority,
such as Verisign, or by creating it yourself with a product such as OpenSSL, you then use the SSL elements to
configure the server for SSL.

The following is a quick start to allowing SSL-enabled connections to the server:

• Go to the SSL section of the Adaptor.xml file.

• Specify the location of the certificate in the SSLCertificateFile element.

• Specify where to find the associated private key file in the SSLCertificateKeyFile element.

• If the private key file is encrypted, specify the passphrase to use for decrypting the private key file in the
SSLPassPhrase element.

• Save the modified Adaptor.xml file.

Contained elements

SSLServerCtx container.

SSLCertificateFile
Specifies the location of the certificate to return to clients who want to make a secure connection to the server.

If an absolute path is not specified, the certificate location is assumed to be relative to the adaptor directory.

Example

<SSLCertificateFile>c:\myCertFile</SSLCertificateFile>

See also

SSLCertificateKeyFile, SSLPassPhrase, SSLCipherSuite, SSLSessionTimeout

SSLCertificateKeyFile
This specifies the location of the private key file that corresponds to the public key in the certificate specified in
SSLCertificateFile element.

If this file is encrypted, a password must be specified for decrypting and placed in the SSLPassPhrase element
described below. If an absolute path to the key file is not specified, it is assumed to be relative to the adaptor directory.

Example

<SSLCertificateKeyFile type="PEM"></SSLCertificateKeyFile>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

88

The type attribute specifies the type of encoding used for the certificate key file. The encryption format is either
PEM (Privacy Enhanced Mail) or ASN1 (Abstract Syntax Notation 1). The default is PEM.

See also

SSLCertificateFile, SSLPassPhrase, SSLCipherSuite, SSLSessionTimeout

SSLCipherSuite
Specifies the suite of encryption ciphers that the server uses to secure incoming connections.

This element contains a list of colon-delimited components. A component can be a key exchange algorithm, authen-
tication method, encryption method, digest type, or one of a selected number of aliases for common groupings.

Note: Contact Adobe Support before changing the default settings as listed in this example.

Example

<SSLCipherSuite>ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH</SSLCipherSuite>

See also

SSLCertificateFile, SSLCertificateKeyFile, SSLPassPhrase, SSLSessionTimeout

SSLPassPhrase
Specifies the passphrase to use for encrypting the private key file.

Specifies the password to use for decrypting the key file if the key file is encrypted. If the key file is not encrypted,
this element is left blank.

To prevent plain text passwords appearing in the configuration file, encode the password in base64 format and set
the encrypt attribute to true.

Example

<SSLPassPhrase encrypt="true">dGluY2Fu</SSLPassPhrase>

The encrypted password is equivalent to the plaintext format:

<SSLPassPhrase>tincan</SSLPassPhrase>

or

<SSLPassPhrase encrypt="false" >tincan</SSLPassPhrase>

Even though the element attribute is named "encrypt", it is not a true encryption. It is a base64 encoding that makes
the password less readable.

See also

SSLCertificateFile, SSLCertificateKeyFile, SSLCipherSuite, SSLSessionTimeout

SSLServerCtx
Container element.

The elements in this section control the incoming SSL configuration for this adaptor.

Contained elements

SSLCertificateFile, SSLCertificateKeyFile, SSLPassPhrase, SSLCipherSuite, SSLSessionTimeout

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

89

SSLSessionTimeout
Specifies in minutes how long a SSL-based session remains valid. The default time period is 5 minutes.

SSL sessions are used to improve performance by avoiding the need to perform the full SSL handshake for every
connection. When a client connects to a server for the first time, it must perform the full handshake. After that first
handshake, the server sends back a session object to the client, which the client can place in the cache and reuse at a
later time.

If the client connects to the same server again at a later time, it can send back the cached session object. The server
does not require the full SSL handshake if the session is still valid.

Example

<SSLSessionTimeout>5</SSLTimeout>

See also

SSLCertificateFile, SSLCertificateKeyFile, SSLPassPhrase, SSLCipherSuite

UpdateInterval
Specifies how often the server refreshes the cache content, in milliseconds. By default, the value is 5000 milliseconds.

Example

<UpdateInterval>5000</UpdateInterval>

See also

Path, MaxSize

WriteBufferSize
Specifies the size of the write buffer in kilobytes. The default size is 16 KB.

Example

<WriteBufferSize>16</WriteBufferSize>

See also

ResourceLimits

Application.xml file
The Application.xml file contains the settings for Flash Media Server applications. These settings include the size of
the Server-Side Media ActionScript runtime engine, the location at which streams and shared objects are stored, and
bandwidth limitations.

The Application.xml file in the virtual host directory configures the default settings for all applications within the
virtual host. If you want to have different settings for a particular application, copy an Application.xml file to the
application’s registered application directory (/applications/app_name) and edit it to include the settings you want.

In most cases, the settings in the Application.xml file in the application directory override settings in the Appli-
cation.xml file in the virtual host directory, but not always. You can add an override attribute to certain elements
in a virtual host’s Application.xml file, as in the following:

<LoadOnStartup override="no">false</LoadOnStartup>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

90

The server uses the following rules when applying the override attribute:

• When the override attribute is included in an element and set to no, application-specific Application.xml files
cannot override that element’s setting.

• If an element has the override attribute set to no, then all subelements also cannot be overridden.

• If an Application.xml file is located in the application directory and specifies a different value than the default
for an element that is not overridable, it is ignored, and the default is used.

• If the default Application.xml file is missing or invalid, the server will not start.

• If the user-specified Application.xml configuration file is invalid, it is ignored.

• All subelements under the LoadOnStartup element cannot be overridden.

• If you omit the override attribute, the LoadOnStartup element can be overridden.

• To change an element so it cannot be overridden, set the override tag to no in the uppermost tag that you wish
to make non-overridable.

Note: By default, the Bandwidth and BandwidthCap container elements include an override parameter set to yes,
which allows the values for the ClientToServer and ServerToClient elements nested in these sections to be
overridden. The Client element in this XML file includes an override="no" attribute by default.

To see the element structure and default values in Application.xml, see the Application.xml file installed with Flash
Media Server in the RootInstall/conf/_defaultRoot_/_defaultVhost_ directory.

Summary of elements

Application.xml element Description

Access Container element; contains element that controls the permission levels in the Module (the
libconnect.dll file).

AccumulatedIFrames Container element; contains elements that configure intermediate frames in a live stream.

AggregateMessages (Client) Specifies whether or not to send aggregate messages to clients.

AggregateMessages (Queue) Container element; contains elements that control the size of the aggregate messages. This
element also specifies, when queuing is enabled, if messages in the queue can be combined to
form aggregate messages.

Allow Allows or disallows the "following and Location:" header added with HTTP redirection.

AllowDebugDefault Specifies the default value for allowing debug connections per application.

AllowHTTPTunnel Configures Flash Media Server to allow tunneling connections into this application.

Application Root element; this element contains all elements in Application.xml.

Audio Container element; contains elements to configure the audio stream settings.

AudioSampleAccess Enables access to the raw uncompressed audio data in a stream.

AutoCommit Enables or disables the Shared Object Manager to automatically commit shared objects.

Bandwidth Container element; contains elements to configure the bandwidth settings for server-client
communications.

BandwidthCap Container element; contains elements that specify the maximum bandwidth values that a user
can set.

BandwidthDetection Container element; contains elements that specify how data is sent to the client.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

91

Bits Contains the settings for different versions of Flash Player on the Windows and Macintosh plat-
forms.

BufferRatio Specifies the ratio of the buffer length used by server-side stream to live buffer.

Cache Container element; contains elements that configure the cache setting for SWF verification.

CachePrefix Specifies the cache prefix that is passed from the origin server to the edge server.

CacheUpdateInterval Specifies the interval for updating cache streaming in the edge server.

Client Container element; contains elements to configure the client.

ClientToServer (Bandwidth)
Bandwidth

Container element; specifies the bandwidth settings for client-to-server communications.

ClientToServer (BandwidthCap)
BandwidthCap

Container element; specifies the bandwidth settings for client-to-server communications that
can be set by the user.

CombineSamples Container element; contains elements to configure how to use sound sampling.

Connections Container element; contains elements to configure settings for HTTP connections.

DataSize Specifies the amount of data the server sends to the client.

Debug Container element; contains elements that configure debug connections.

Distribute Specifies how to distribute application instances to processes.

DuplicateDir Specifies a backup location for shared objects and recorded stream files.

Duration Specifies the wait time before the server notifies clients when audio stops in a stream.

EnhancedSeek Enables the fine-tuning of the seeking performance within streams by creating a key frame.

Exception Specifies user agents to except from authentication.

FileObject Container element; contains element with file object setting.

FlushOnData Specifies whether the server flushes the message queue when a data message arrives.

FolderAccess Configures folder-level permissions for the readAccess and writeAccess functions in the Access
Module.

HiCPU Specifies the upper limit to begin sound sampling.

Host Specifies the HTTP proxy to use.

HTTP Container element; contains elements to configure the HTTP connections for this application.

HTTP1_0 Allows or disallows use of the HTTP 1.0 protocol.

HTTPTunnel Container element; contains elements to configure HTTP tunneling.

IdleAckInterval Specifies the wait time before the server responds to an idle post sent to it.

IdlePostInterval Specifies the wait time before Flash Player sends an idle post message to the server.

Interface Specifies the name to use as the outgoing network interface.

Interval Specifies the interval for sending silence messages when no audio is being published to a live
stream.

JSEngine Container element; contains the elements in this section that configure the JavaScript engine.

KeyFrameInterval Specifies the time interval for saving keyframes in a FLV file.

Application.xml element Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

92

LifeTime Specifies the lifetime of stateless core processes.

Live (StreamManager) Container element; contains elements that specify the configuration of intermediate frames in
a live stream.

Live (MsgQueue) Container element; contains elements that specify the configuration of live audio.

LoadOnStartup Specifies whether or not to load this application when the server starts.

LockTimeout Specifies the time-out value before unlocking a shared object file.

LoCPU Specifies the lower limit to halt sound sampling.

Max Specifies the maximum number of HTTP redirections allowed.

MaxAggMsgSize Specifies the maximum size in bytes of the aggregate messages created from the message
queue, when aggregate messages are enabled.

MaxAppIdleTime Specifies the maximum time an application instance can be idle.

MaxAudioLatency Specifies that live audio should be dropped after a set amount of time.

MaxBufferRetries Specifies default buffer length for live audio and video.

MaxCores Specifies the maximum number of core processes for an application.

MaxFailures Specifies the maximum number of failures for a core process.

MaxGCSkipCount Specifies the maximum number of times that the server will skip garbage collection (GC) when
the JS engine is busy.

MaxMessageSizeLosslessVideo Specifies the maximum size of messages for screen-sharing packets.

MaxPendingDebugConnections Specifies the maximum number of pending debug connections. allowed.

MaxProperties The maximum number of properties that can be set per shared object.

MaxPropertySize The maximum size in bytes for each property of a shared object.

MaxQueueDelay Specifies how often the server will flush the message queue, in milliseconds.

MaxQueueSize Specifies how often the server will flush the message queue, in bytes.

MaxRate Specifies the maximum rate at which the server sends data to the client.

MaxSamples Specifies the maximum number of samples that can be combined into a message.

MaxSize Specifies the maximum size of intermediate frames a live stream can hold in the buffer.

MaxStreamsBeforeGC Specifies that a GC should be forced if the stream list grows over set value.

MaxTime Specifies the maximum duration of intermediate frames a live stream can hold in the buffer.

MaxTimeOut (Connections)
Connections

Container element; specifies the maximum time for a transfer to be completed.

MaxTimeOut (JSEngine)
JSEngine

Container element; specifies the maximum time a script can take to execute a Java server func-
tion.

MaxUnprocessedChars Specifies the amount of data that can be received from the XML server before XMLSocket closes
the connection.

MaxWait Specifies how long, in seconds, the server waits before sending data to the client.

MimeType Specifies the default MIME-type header sent on tunnel responses.

Application.xml element Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

93

MinBufferTime (Live) Specifies the default buffer length for the live audio and video queue.

MinBufferTime (Recorded) Specifies the default buffer length for audio and video.

MinGoodVersion Specifies the minimum accepted version of SWF verification allowed by the server.

MsgQueue Container element; contains elements that configure live and recorded audio.

NetConnection Container element; specifies object encoding to use for SSAS NetConnection.

Password Specifies whether the server is notified when an audio transmission ending on a stream is
encountered.

ObjectEncoding Specifies default object encoding to use for SSAS NetConnection.

OutChunkSize Specifies the RTMP chunk size to use in all streams for this application.

OverridePublisher Deprecated; see PublishTimeout.

Password Specifies the password for connections to the edge.

Port Specifies the proxy port to connect to if not specified.

Prioritization Specifies whether outgoing messages are prioritized by message type when sending across
server-to-server connection.

Process Container element; contains elements to configure the process and recovery settings for appli-
cations.

Proxy Container element; contains elements to configure the HTTP proxy.

PublishTimeout Specifies how long in milliseconds the server waits to receive a response from a publisher when
another client tries to publish to the same stream.

Queue Container element; configures the settings of the message queue.

Recorded Container element; specifies aspects of buffer length.

RecoveryTime Specifies the recovery time for a core.

Redirect Container element; contains elements to configure HTTP redirection.

ResyncDepth Specifies the resyncing interval for shared object files.

Reuse Specifies whether or not to close the HTTP connection after each transfer.

RollOver Specifies the time length a core process is in use.

RuntimeSize Specifies the maximum size for the script engine.

Scope Specifies the process scope in which the application runs.

ScriptLibPath Contains a list of paths the Java Server engine can search to resolve a script file.

SendDuplicateOnMetaData Specifies if an onMetaData message is sent at the beginning of the video file for all commands.

SendDuplicateStart Specifies if the status message NetStream.Play.Start is sent for all commands.

SendSilence Container element; contains elements to configure the sending of silence messages.

Server Container element; contains element that specifies the ratio of the buffer length used by server-
side stream to live buffer.

ServerToClient (Bandwidth)
Bandwidth

Specifies the bandwidth settings for server-to-client communications.

Application.xml element Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

94

Access
Container element.

The Access plug-in consists of the libconnect.dll file. It intercepts and examines each connection request to Flash
Media Server to determine whether the connection should be accepted or rejected.

Contained element

FolderAccess

ServerToClient (BandwidthCap)
BandwidthCap

Specifies the maximum bandwidth a user can set for data sent from the server to the client.

SharedObjManager Container element; contains elements to configure the Shared Object Manager of an applica-
tion.

StorageDir Specifies the locations where recorded streams and shared objects are stored.

StreamManager Container element; contains the Stream Manager settings for the application.

Subscribers Specifies a base number of subscribers required before implementing sound sampling.

SWFFolder Specifies a single folder or a list of folders containing copies of client SWF files that can be veri-
fied for connecting to the application.

SWFVerification Container element; contains elements that specify how a SWF file connecting to an application
is verified.

ThrottleBoundaryRequest Controls the maximum number of concurrent boundary requests per recorded stream.

ThrottleDisplayInterval Controls the interval at which the server displays the throttle queue length.

ThrottleDisplayInterval Controls the interval at which the server displays the throttle queue length.

Tunnel Specifies whether or not to tunnel all operations through a given HTTP proxy.

TTL Specifies in minutes how long each SWF file remains in the cache. The default value is 1440
minutes (24 hours).

Type Specifies the type of proxy being connected to.

UnrestrictedAuth Allows or disallows sending the user name/password with each HTTP redirection.

UpdateInterval Specifies the maximum time in minutes to wait for the server to scan the SWF folders for
updates when there is a miss in the cache.

UserAgent Specifies the version dependency settings for clients that use different versions of Flash Player
on different platforms.

UserAgentExceptions Container element; contains element that specifies exceptions to SWF verification.

Username Specifies the user name for connections to the proxy.

Verbose Enables or disables the use of verbose information during HTTP operations.

VideoSampleAccess Enables access to the raw uncompressed video data in a stream.

VirtualDirectory Specifies virtual directory mappings for Server-Side ActionScript File objects and video files.

WriteBufferSize Specifies the size of the write buffer.

XMLSocket Container element; contains element that specifies the amount of data XMLSocket accepts
from XML server before closing the connection.

Application.xml element Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

95

AccumulatedIFrames
Container element.

The elements in this section specify the maximum size and duration of intermediate frames a live stream can hold
in the buffer.

Contained element

MaxTime, MaxSize

AggregateMessages (Client)
Specifies whether or not to send aggregate messages to clients. When the enabled attribute is set to true, the server
will deliver aggregate messages to clients that support them. When this setting is disabled, aggregate messages are
broken up into individual messages before being delivered to clients. The default is false.

AggregateMessages (Queue)
Container element; contains element that control the size of the aggregate messages.

This element also specifies, when queuing is enabled, if messages in the queue can be combined to form aggregate
messages. When the enabled attribute is set to true (the default value), the server will create aggregate messages

The server attempts to send aggregate messages to supported clients whenever possible. When this setting is
disabled, aggregate messages are always broken up into individual messages before being delivered to clients.

Example

<AggregateMessages enabled="false"><\AggregateMessages>

See also

MaxAggMsgSize, HTTPTunnel, MaxMessageSizeLosslessVideo, OutChunkSize

Allow
Specifies whether or not to allow the "following and Location:" header that is sent with redirection of an HTTP
header. The default is true, allowing HTTP redirects.

Example

<Allow>true</Allow>

See also

Max, UnrestrictedAuth

AllowDebugDefault
Specifies the default value for application.allowDebug. This is an opening that allows debug connections on a per
application basis. The default value is false.

Example

<AllowDebugDefault>false</AllowDebug Default>

See also

MaxPendingDebugConnections

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

96

AllowHTTPTunnel
This element configures the server to allow HTTP tunneling connections into this application.

By default, Flash Player communicates with the server using the RTMP protocol over port 1935. If that fails, it will
try again over ports 443 and 80 in an attempt to get around firewall settings, which prevents TCP/IP connections
over nonstandard ports.

In some cases, the Flash Player has to negotiate a connection to Flash Media Server through an edge server, or use
the HTTP protocol to transmit RTMP packets (called HTTP tunneling) if there is a firewall that allows only HTTP
content to be sent out to public servers.

The values for this element are described in the following table.

Example

<AllowHTTPTunnel>true></AllowHTTPTunnel>

See also

Allow

Application
This is the root element for Application.xml.

See also

Process, LoadOnStartup, MaxAppIdleTime, JSEngine, StreamManager, SharedObjManager, AllowHTTP-
Tunnel, Client, Debug, HTTP, SWFVerification

Audio
Container element.

The elements in this section specify the settings for audio streams on the server.

Contained element

CombineSamples, SendSilence, Password

AutoCloseIdleClients
Container element.

Contains elements that determine whether or not to close idle clients automatically.

Set the enable attribute to true to close idle clients. If the enable attribute is omitted or set to false, the feature is
disabled. The default value is false.

Value Description

true Allows tunneling connections.

false Disallows tunneling connections.

http1.1only Allows HTTP 1.1 connections only.

keepalive Allows HTTP 1.0 and 1.1 keepalive connections.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

97

A client is active when it is sending or receiving data. Use <AutoCloseIdleClients> to specify how often the server
should check for idle clients. When a client has been idle longer than the maximum idle time (60 seconds by default),
the server sends a status message to the NetConnection object (the client). The server closes the client connection
to the server and writes a message to the access log. The server also writes a message such as “Client x has been idle
for y seconds” in the core and event logs.

To configure the closing of idle connections, you must enable the feature in the Server.xml file. Once you enable the
feature in the Server.xml file, you can disable the feature for individual virtual hosts in the Vhost.xml files or for
individual applications in Application.xml. The values defined in the Vhost.xml configuration file apply to all clients
connected to the Vhost, unless values are defined in the Application.xml file. The Application.xml values override
the Vhost.xml values. (Subsequently, the values defined in the Server.xml configuration file apply to all clients
connected to the server, unless the values are defined in the Vhost.xml file. The Vhost.xml values override the
Server.xml values.

Example

<AutoCloseIdleClients enable="false">
<CheckInterval>60</CheckInterval>
<MaxIdleTime>600</MaxIdleTime>

</AutoCloseIdleClients>

AudioSampleAccess
Allows the client application to access the raw uncompressed audio data in a stream. By default, this element is
disabled. To enable it, set the enable attribute to true. In the tag, specify a list of semicolon-delimited folders to
which client applications have access. When this element is enabled, all clients can access the audio data in streams
in the specified folders. To enable access to all audio data streamed by the server, specify / in the tag.

The folder path is restricted to the application’s streams folder or folders, so do not use absolute paths in the list of
folders.

While you can also enable access through Server-Side ActionScript, this element allows access to the data without
requiring Server-Side ActionScript. You can also override this element with the Access plug-in or Server-Side
ActionScript.

Example

If an application is configured to store streams in folders C:\low_quality and C:\high_quality, the configu-
ration to allow access to sample those streams is as follows:

<AudioSampleAccess enabled="true">low_quality;high_quality</AudioSampleAccess>

See also

VideoSampleAccess

AutoCommit
Specifies if shared objects are automatically committed when they have been changed. Setting this element to false
disables the Flash Player function for all shared objects within this instance.

Note: If the AutoCommit function is disabled, the server-side script has to call the save function or the
SharedObject.commit command for the shared object to persist; otherwise, all data will be lost when the application
is shut down.

Example

<AutoCommit>true</AutoCommit>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

98

See also

StorageDir, DuplicateDir, ResyncDepth, LockTimeout, MaxProperties, MaxPropertySize

Bandwidth
Container element.

The elements nested in this container specify the bandwidth settings for upstream (client-to-server) and
downstream (server-to-client) data.

By default, the Bandwidth element includes an override parameter set to yes, which allows the values for the
ClientToServer and ServerToClient elements to be overridden as well.

Contained element

ClientToServer (Bandwidth), ServerToClient (Bandwidth)

BandwidthCap
Container element.

The elements in this section specify the bandwidth settings that a user can set. By default, this element includes an
override parameter set to yes, which allows the values for the ClientToServer and ServerToClient elements
nested in this section to be overridden, too.

Contained element

ClientToServer (BandwidthCap), ServerToClient (BandwidthCap)

BandwidthDetection
Container element.

This element contains settings for how the server detects bandwidth. Set the enable attribute to true or false to
turn this feature on or off.

The server can detect client bandwidth in the core server code (native) or in a server-side script (script-based).
Native bandwidth detection is enabled by default and is faster than script-based because the core server code is
written in C and C++.

The server detects bandwidth by sending a series of data chunks to the client, each larger than the last. You can
configure the size of the data chunks, the rate at which they are sent, and the amount of time the server sends data
to the client.

The following table lists the values available for the BandwidthDetection element.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

99

Example

<BandwidthDetection enabled="true">
<MaxRate>-1</MaxRate>
<DataSize>16384</DataSize>
<MaxWait>2</MaxWait>

</BandwidthDetection>

Contained element

MaxRate, DataSize, MinBufferTime (Live)

Bits
This element contains the settings for Flash Player on the Windows and Macintosh platforms.

Example

<Bits from="WIN 6,0,0,0" to="WIN 7,0,55,0">0x01</Bits>
<Bits from="MAC 6,0,0,0" to="MAC 7,0,55,0">0x01</Bits>

See also

UserAgent

BufferRatio
Specifies the ratio of the buffer length used by server-side stream to live buffer.

Example

<BufferRatio>0.5</BufferRatio>

See also

Server

Cache
Container element; contains elements that configure the cache setting for SWF verification.

Element Description Impact

BandwidthDetection Set the enabled attribute to true or false to turn this
feature on or off.

MaxRate The maximum rate in Kbps that the server sends data to the
client. The default value is -1, which sends the data at what-
ever rate is necessary to measure bandwidth.

DataSize The amount of data in bytes that the server sends to the
client. To detect the client’s bandwidth, the server attempts
to send a series of random blocks of data to the client, each
time sending this much more data. For example, x bytes are
sent, followed by 2x bytes, followed by 3x bytes, and so on
until MaxWait time has elapsed.

MaxWait The number of seconds the server sends data to the client. Increasing this number provides a more accurate
bandwidth figure but also forces the client to wait
longer.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

100

See also

TTL, UpdateInterval

CachePrefix
Specifies the cache prefix that is passed from the origin server to the edge server.

This element is set on the origin server. The edge server uses the value of this element as a relative path to locate the
cache file defined in the CacheDir element.

The type attribute provides additional specification for the cache prefix. The type attribute can be set to path or
sname. The default is path.

Examples

<CachePrefix type="path"></CachePrefix>

When the attribute type is path, the server appends the physical path of the recorded stream to the prefix.

<CachePrefix type="sname"></CachePrefix>

When the attribute type is sname, the server appends the stream name to the prefix.

The cache prefix is any text with or without preset parameters. The prefix can be any name without special
characters, such as \, :, *, ?, ", <, >, |. All parameters are surrounded by ?. The server substitutes the actual names for
everything specified within the ?.

By default, the prefix is set to ?IP?

You can include the IP address in the prefix to avoid file collision. For example, the edge server might be connecting
to two different origin servers with the same file in c:\data\foo.flv. Adding the IP to the prefix for these files points
each file to the appropriate server.

If you want more than one origin server to share the cache file, do not include the IP as a parameter. Remember the
cache prefix is a relative path used by the edge server to look up the cache stream file.

Examples

The cache prefix creates a relative path in the edge’s CacheDir. All parameters are separated by \ or /.

<CachePrefix type="path">c:\fms\flvs\foo.flv. data/?IP?</CacheDir>

resolves to:

data/xxx.xxx.xxx.xxx/c/fms/flvs/foo.flv

<CachePrefix type="path">?APPINST?/data</CacheDir>

resolves to:

app1/inst1/data/c/fms/flvs/foo.flv

<CachePrefix type="path">origin1/data/</CacheDir>

Cache prefix Actual name

?IP? IP address of the server

?APP? Application name

?APPINST? Application instance

?VHOST? vhost name

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

101

resolves to:

origin1/data/c/fms/flvs/foo.flv

See also

StorageDir, DuplicateDir, CacheUpdateInterval

CacheUpdateInterval
This element defines the wait interval for updating the cache streaming in the edge server. The interval is defined in
milliseconds. The default value is 10 minutes. The minimum interval is 10 seconds. The maximum interval is 24
hours.

Example

<CacheUpdateInterval>10</CacheUpdateInterval>

See also

StorageDir, DuplicateDir, CachePrefix

Client
Container element.

The elements nested within this container configure the client.

By default, the Client element includes an override="no" parameter. Individual applications cannot override how
the elements in the Client section are configured.

Contained element

Bandwidth, BandwidthCap, BandwidthDetection, MsgQueue, HTTPTunnel, MaxMessageSizeLosslessVideo,
OutChunkSize,

ClientToServer (Bandwidth)
Specifies the maximum bandwidth the client can use for sending data upstream to the server. The default bandwidth
is 1,250,000 bytes per second.

Example

<ClientToServer>1250000</ClientToServer>

See also

ServerToClient (Bandwidth)

ClientToServer (BandwidthCap)
Specifies the maximum bandwidth a user can set for data to be sent upstream from the client to the server. The
default bandwidth is 100,000,000 bytes per second.

Example

<ClientToServer>100000000</ClientToServer>

See also

ServerToClient (BandwidthCap)

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

102

CombineSamples
Container element.

The server conserves system resources by combining sound samples. This strategy saves the CPU and bandwidth
overhead when transmitting individual audio packets only.

Note: Use this strategy of combining sound samples advisedly during periods of high CPU usage, as it can cause latency.

Contained element

LoCPU, HiCPU, MaxSamples, Subscribers

Connections
Container element.

The elements in this section configure the HTTP connections for this application.

Contained element

MaxTimeOut (Connections), Reuse, Interface

DataSize
Specifies the amount of data in bytes that the server sends to the client. To detect the client’s bandwidth, the server
attempts to send a series of random blocks of data to the client, each time sending this much more data. For example,
x bytes are sent, followed by 2x bytes, followed by 3x bytes, and so on until MaxWait time has elapsed.

Example

<DataSize>16384</DataSize>

See also

MaxRate, MinBufferTime (Live)

Debug
Container element.

The elements in this section configure debug connections, including the maximum number of connections and the
value for application.allowDebug.

Contained element

AllowDebugDefault, MaxPendingDebugConnections

Distribute
Specifies how to distribute application instances to processes. The default value is insts, meaning each application
instance runs in its own process. This tag contains a numprocs attribute, which specifies the maximum number of
processes to run concurrently. The default value of the numprocs attribute is 3.

This feature is turned on by default. To use this feature, the numprocs attribute must be set to a value higher than 0
or 1. With the default configuration, for all your applications and application instances under a single virtual host,
three core processes will run. Each virtual host is allotted three core processes, so systems that use multiple virtual
hosts will generate more running processes. For more information, see Configure how applications are assigned to
server processes.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

103

Note: There is no limit to the value of the numprocs attribute, but you should never need more than 40.

Scopes have an enclosing relationship with a strict ordering: adaptors contain virtual hosts, which contain applica-
tions, which contain instances, which contain clients. The value of the Distribute tag must be a scope that is lower
in order than the value in the Scope tag. In other words, if the value of Scope is adaptor, the value of Distribute
can be vhosts, apps, insts, or clients. If the value of Scope is app, the value of Distribute can be insts or
clients. By default, the server uses the value immediately lower than the one specified in the Scope tag.

The following table lists the values available for the Distribute element:

Example

<Distribute numproc="1"></Distribute>

See also

Scope, LifeTime, MaxFailures, RecoveryTime

DuplicateDir
This is one of two DuplicateDir elements in the Application.xml file: one is in the SharedObjManager container
and one is in the StreamManager container.

Specifies the physical location where duplicate copies of shared objects or recorded streams are stored.

This location serves as a backup for shared object files and recorded stream files. This location must already exist
when a shared object is copied to it.

Example

<DuplicateDir appName="true">c:\backupSharedObjects</DuplicateDir>

<DuplicateDir appName="true">c:\backupStreams</DuplicateDir>

To include the application name in the paths for the backup files, change the appName attribute to "true".

See also

StorageDir

Duration
This element instructs the server how long, in seconds, to wait before it notifies the client when the audio has stopped
in the middle of a live or recorded audio stream.

Value Description

vhosts All instances of applications in a virtual host run together in a process.

apps All instances of an application run together in a process.

insts Each application instance runs in its own process. This is the default value. If you choose this value, you must also
set the Distribute numprocs attribute to a value greater than 1.

clients Each client connection runs in its own process.

Use this value for stateless applications—applications that don’t require clients to interact with other clients and
don’t have clients accessing live streams. Most vod (video on demand) applications are stateless because each
client plays content independently of all other clients. Chat and gaming applications are not stateless because
all clients share the application state. For example, if a shared chat application were set to client, the messages
wouldn't reach everyone in the chat because they’d be split into separate processes.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

104

The default wait time is 3 seconds. The minimum wait time is 1 second. There is effectively no maximum value (the
maximum is the maximum value of a 32-bit integer).

Example

<Duration>3</Duration>

See also

Password

EnhancedSeek
This element enables or disables fine-tuning of the seeking performance within streams by creating a keyframe.

Keyframes improve the visual display of video files while seeking. When set to true, a new keyframe is dynamically
generated to provide smooth seeking to that index point.

Note: The FMS server will generate new keyframes for Sorenson Spark-encoded FLV files. For On2 VP6, the new
keyframe is calculated and generated in Flash Player 9a or later. For H.264-encoded video, the new keyframe is calcu-
lated and generated in Flash Player Update 3 or later.

The default value is true. The server does not insert keyframes and all seeks begin at the nearest existing keyframe.

Example

<EnhancedSeek>true</EnhancedSeek>

See also

KeyFrameInterval

Exception
This element indicates that a specific user agent is an exception to authentication. Use the from and to attributes to
indicate the lowest and highest versions to except. This is a string comparison with editing to make all numeric fields
equal length.

For example, using a specific Flash Player will report WIN 9,0,28,0 as its UserAgent. Add To="WIN 9,0,28,0" and
From="WIN 9,0,28,0" and only that version is an exception.

See also

UserAgentExceptions

FileObject
Container element.

The VirtualDirectory element nested within this container configures the JSEngine file object settings.

Contained element

VirtualDirectory

FlushOnData
Specifies whether the server flushes the message queue when a data message arrives. This element is important for
streaming data-only messages, so the server can send out the messages immediately. The default is true.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

105

See also

Queue, MaxQueueSize, MaxQueueDelay, AccumulatedIFrames

FolderAccess
Configures the level of permission for readAccess and writeAccess that can be set by the access module in order to
access the streams and sharedObjects. This allows two levels of permissions: file-level access (a value of false),
which allow access to a particular file only, and folder-level access (a value of true), which allows access to a
particular directory.

Example

<FolderAccess>false</FolderAccess>

See also

Access

HiCPU
This element instructs the server to start combining samples when the CPU utilization is higher than the specified
percentage of the CPU resources. Default percentage of utilization is 80.

Example

<HiCPU>80</HiCPU>

See also

Subscribers, LoCPU, MaxSamples

Host
This element identifies the HTTP proxy. The value of the Host element can be the host name or an IP address. The
port number can also be specified in the Port element.

Example

<Host>www.example.com:8080</Host>

See also

Port, Type, Tunnel, Username, Password

HTTP
Container element.

The elements in this section configure the HTTP connection settings for this application.

Contained element

HTTP1_0, Verbose, Connections, Proxy, Redirect

HTTP1_0
This element determines whether or not the server can use the HTTP 1.0 protocol. The default is false, disallowing
the use of the HTTP 1.0 protocol.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

106

Example

<HTTP1_0>false</HTTP1_0>

See also

HTTP, Verbose, Connections, Proxy, Redirect

HTTPTunnel
Container element.

The elements nested within this container configure the parameters for HTTP tunneling (sending RTMP packets
through HTTP).

The tunneling protocol is based on the client continuously polling the server. The frequency of polling affects both
network performance and the efficiency of the HTTP protocol. The IdleAckInterval and IdlePostInterval
elements control the polling frequency on a per-client basis. Selecting too small a delay value for the above param-
eters will increase the polling frequency and reduce the network performance and efficiency. Selecting too high
values can adversely affect the interactivity of the application and the server.

The Application.xml configuration file offers three representative settings for these parameters. These settings
recommend that you set the intervals to correspond to low, medium, or high latency.

The following table presents these settings.

Example

<HTTPTunnel>
<IdlePortInterval>512</IdlePostInterval>
<IdleAckInterval>512</IdleAckInterval>
<MimeType>application/x-fcs</MimeType>
<WriteBufferSize>16</WritebufferSize>

</HTTPTunnel>

Contained element

IdlePostInterval, IdleAckInterval, MimeType, WriteBufferSize

IdleAckInterval
Specifies the maximum time the server may wait before it sends back an ack (acknowledgement code) for an idle
post sent by the client.

The server may respond sooner than the value of this element if it has data to send back to the client or if some other
client is being blocked by the current idle request.

This interval implies that the client may not be able to reach the server for the selected duration. The interval cannot
be set to a negative value.

The default interval is 512 milliseconds.

Acceptable Latency IdlePostInterval IdleAckInterval

Low 128 milliseconds 256 milliseconds

Medium 512 milliseconds 512 milliseconds

High 1024 milliseconds 2048 milliseconds

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

107

Example

<IdleAckInterval>512</IdleAckInterval>

See also

IdlePostInterval, MimeType, WriteBufferSize

IdlePostInterval
Specifies how long Flash Player should wait before sending an idle post to the server.

Idle posts are sent when Flash Player has no data to send, but posting is necessary to provide the server with an
opportunity to send data downstream to the client.

The interval for an idle post ranges from 0 to 4064 milliseconds. If the IdlePostInterval element is set to a value
that lies outside of this range, the default value of 512 milliseconds is used.

Note: At times, the server will not be able to send any data to the client for the selected duration.

Example

<IdlePostInterval>512</IdlePostInterval>

See also

IdleAckInterval, MimeType, WriteBufferSize

Interface
This element defines the name to use as the outgoing network interface.

The name can be an interface name, an IP address, or a host name.

Example

<Interface>www.example.com</Interface>

See also

MaxTimeOut (Connections), Reuse

Interval
Specifies the interval in milliseconds for sending silence messages when no audio is being published to a live stream.

Silence messages are used to support older versions of Flash Player. The server only sends the silence message to
clients specified in the UserAgent element in the Client section. Bit-flag 0x01 is used to control the silence message.

The default interval is 3 seconds. Set this to 0 to disable the silence message transmission.

Example

<Interval>3</Interval>

See also

SendSilence

JSEngine
Container element.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

108

The elements nested within this container configure the JavaScript engine.

In the server Application.xml configuration files, you can define properties for the server-side Application object.
Defining properties in the default Application.xml file creates properties available for all applications on a virtual
host. Defining properties in an Application.xml file in an application folder creates properties available for that appli-
cation only.

To define a property, create an XML tag. The property name corresponds to the tag’s name, and the property value
corresponds to the tag’s contents.

Example

The following XML fragment defines the properties user_name and dept_name, with the values jdoe and
engineering, respectively:

<JSEngine>
<config>
<user_name>jdoe</user_name>
<dept_name>engineering</dept_name>
</config>

</JSEngine>

To access the property in server-side code, use the syntax in either of these examples:

application.config.prop_name
application.config["prop_name"]

Note: The properties you define are accessible from application.config.property, not from
application.property.

Contained element

RuntimeSize, MaxGCSkipCount, MaxTimeOut (JSEngine), ScriptLibPath, FileObject, XMLSocket, NetCon-
nection

KeyFrameInterval
This element defines how often to generate and save keyframes in an FLV file.

The initial value is 60000, which is the recommended value. However, if this tag is unspecified or set to a value out
of range, the server uses a default value of 1000. Setting this element to a higher value than the initial value reduces
the number of keyframes added to the FLV file and thus reduces the file size. Setting a higher value for the interval,
however, reduces the seeking accuracy. The value of this element is defined in milliseconds.

For example, a 15-second video with a file size of 76 KB is increased only to 89 KB when the KeyFrameInterval
element is set to 5000, which is an increase of 13 KB, or 17%. The same video has a size of 109 KB with the
KeyFrameInterval element set to 1000, which is an increase of 33 KB, or 43%.

Note: Be aware of the correlation between file size and accuracy of seeking when you set this value.

Example

<KeyFrameInterval>1000</KeyFrameInterval>

See also

StorageDir, DuplicateDir, CacheUpdateInterval

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

109

LifeTime
Container element.

This element determines the lifetime of core processes. To roll over such processes, set this element to a nonzero
value.

Process rollover happens only when the Scope element is set to inst.

Contained element

MaxCores, RollOver

Live (StreamManager)
Container element.

The elements nested within this container configure the intermediate frames in a live stream and the message queue,
and the amount of time the server waits before allowing another publisher to take over a live stream.

Contained element

AccumulatedIFrames, Queue, PublishTimeout

Live (MsgQueue)
Container element.

The elements nested within this container configure live audio.

Contained element

MaxAudioLatency, MinBufferTime (Live)

LoadOnStartup
This element determines whether or not the server loads an application instance when the server starts.

Having an application instance loaded at server startup saves time when the first client connects to that application.
The default value is false.

If you set this element to true, an instance of each application on the server will be loaded at startup.

Example

<LoadOnStartup>false</LoadOnStartup>

See also

Process, MaxAppIdleTime, JSEngine, StreamManager

LockTimeout
Specifies the timeout value before automatically unlocking a shared object if there is a client waiting for an update.
The time-out value is specified in seconds. The default value is -1, which instructs the server to wait for an indefinite
time.

Example

<LockTimeout>-1</LockTimeout>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

110

See also

StorageDir, DuplicateDir, ResyncDepth, AutoCommit, MaxProperties, MaxPropertySize

LoCPU
This element instructs the server to stop combining samples when the CPU utilization is lower than the specified
percentage of the CPU resources. Default percentage of utilization is 60.

Example

<LoCPU>60</LoCPU>

See also

Subscribers, HiCPU, MaxSamples

Max
This element defines the maximum number of redirects allowed.

See also

Allow

MaxAggMsgSize
Specifies the maximum size in bytes of the aggregate messages created from the message queue, when aggregate
messages are enabled. The default value is 4096.

See also

Queue, MaxQueueSize, MaxQueueDelay, FlushOnData, AccumulatedIFrames

MaxAppIdleTime
Specifies the maximum time an application instance can remain idle with no clients connected, before it is unloaded
from the server’s memory.

An application instance is evaluated as idle after all clients disconnect from it. If the application instance is loaded
with no clients connected, it is not evaluated as idle.

The maximum idle time is specified, in seconds. The default is 600 seconds (10 minutes).

Example

<MaxAppIdleTime>600</MaxAppIdleTime>

See also

Process, LoadOnStartup, JSEngine, StreamManager, ApplicationGC

MaxAudioLatency
Specifies that live audio should be dropped if audio exceeds time specified. Time is expressed in milliseconds.

Example

<MaxAudioLatency>2000</MaxAudioLatency>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

111

See also

MinBufferTime (Live)

MaxBufferRetries
Specifies default buffer length for live audio and video.

Example

<MaxBufferRetries>128</MaxBufferRetries>

See also

StorageDir, DuplicateDir, CachePrefix, CacheUpdateInterval

MaxCores
The value of this element determines how many core processes can exist for an application.

By default, the MaxCores functionality is disabled. The default value is zero. For more information on setting the
maximum number of core processes, see Configure how applications are assigned to server processes.

Example

<MaxCores>0</MaxCores>

See also

LifeTime, RollOver

MaxGCSkipCount
Specifies the maximum number of times that the server will skip garbage collection (GC) when the JS engine is busy.
This element determines the frequency of the garbage collection process.

By default, the server only performs GC when the JS engine is not busy. However, the JS engine does not necessarily
perform GC when it is busy, so in some cases, you must force the server to perform GC regardless of the JS engine
state. If MaxGCSkipCount is set to 0, the server forces a GC regardless of the JS engine state. If MaxGCSkipCount is
set to a positive value, the server forces a GC when the skip count exceeds the value in MaxGCSkipCount.

Example

<MaxGCSkipCount>-1</MaxSGCSkipCount>

See also

RuntimeSize, MaxTimeOut (JSEngine), ScriptLibPath,FileObject, XMLSocket, NetConnection

MaxFailures
The value of this element determines the maximum number of core process failures that can occur before a core
process is disabled.

Once the core processes are disabled, the server does not launch a core process until some minimum recovery time
has elapsed. Having a time lag for recovery avoids a denial-of-service action, which can happen when a faulty core
consumes all CPU resources by repeatedly launching itself.

Example

<MaxFailures>2</MaxFailures>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

112

See also

Scope, Distribute, LifeTime, RecoveryTime

MaxMessageSizeLosslessVideo
Specifies the maximum size of messages for screen-sharing packets.

Example

<MaxMessageSizeLosslessVideo>0</MaxMessageSizeLosslessVideo>

See also

OutChunkSize, AccumulatedIFrames, Access, UserAgent

MaxPendingDebugConnections
Specifies the maximum number of pending debug connections. The default is 50. (If the number is set to 0,
debugging connections are disabled.)

Once the specified number is reached, the oldest pending debug connection is rejected to create space.

Example

<MaxPendingDebugConnections>50</MaxPendingDebugConnections>

See also

AllowDebugDefault

MaxProperties
The maximum number of properties for each shared object. To specify unlimited, use -1.

Example

<MaxProperties>-1</MaxProperties>

See also

StorageDir, DuplicateDir, ResyncDepth, LockTimeout, AutoCommit, MaxPropertySize

MaxPropertySize
The maximum size in bytes for each property of a shared object. To specify unlimited size, use -1.

Example

<MaxPropertySize>-1</MaxPropertySize>

See also

StorageDir, DuplicateDir, ResyncDepth, LockTimeout, AutoCommit, MaxProperties

MaxQueueDelay
Specifies how often the server will flush the message queue, in milliseconds. The default value is 500 milliseconds.

See also

Queue, MaxQueueSize, FlushOnData, AggregateMessages (Queue)

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

113

MaxQueueSize
Specifies how often the server will flush the message queue, in bytes. A value of 0 disables queuing. The default value
is 4096.

See also

Queue, MaxQueueDelay, FlushOnData, AggregateMessages (Queue)

MaxRate
Specifies the maximum rate in Kbps at which the server sends data to the client. The default value of -1 sends the
data at whatever rate is necessary to measure bandwidth without throttling.

Example

<MaxRate>-1</MaxRate>

See also

DataSize, MinBufferTime (Live)

MaxSamples
Specifies how many sound samples can be combined into one message.

The default number of samples is 4.

See also

Audio

MaxSize
Specifies maximum size, in kilobytes, of intermediate frames that a live stream can hold in the buffer.

The buffer contains a history of the video messages up to the last keyframe. This enables clients to catch up to the
latest message even if they join between keyframes. If the buffer size is larger than MaxSize, the server clears the
messages. This setting prevents the buffer from growing too large and should be set larger than the total size of inter-
mediate frames between keyframes. A default value of -1 means the size of intermediate frames is unlimited.

Example

<MaxSize>-1</MaxSize>

See also

Subscribers, LoCPU, HiCPU

MaxStreamsBeforeGC
Specifies that garbage collection (GC) should be forced if the stream list grows over the set value. The default value
is -1 (unlimited). GC occurs during the application GC interval.

Example

<MaxStreamsBeforeGC>-1</MaxStreamsBeforeGC>

See also

StorageDir, DuplicateDir, CachePrefix, CacheUpdateInterval, MaxBufferRetries

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

114

MaxTime
Specifies the maximum duration, in seconds, of intermediate frames that a live stream can hold in the buffer.

The buffer contains a history of the video messages up to the last keyframe. This enables clients to catch up to the
latest message even if they join between keyframes. If the duration in the buffer is larger than the MaxTime, the server
clears the messages. This setting prevents the buffer from growing too large and should be set larger than the
keyframe interval. The default value of -1 means the duration is unlimited.

Example

<MaxTime>-1</MaxTime>

See also

RuntimeSize, MaxGCSkipCount, ScriptLibPath, FileObject, XMLSocket, NetConnection

MaxTimeOut (Connections)
This element defines the maximum time for a transfer to be completed. The default time is 60 seconds.

Operations such as DNS lookups may take more time. If the value of this element is too low, the risk of aborting
correctly functioning operations increases.

Example

<MaxTimeOut>60</MaxTimeOut>

See also

Reuse, Interface

MaxTimeOut (JSEngine)
The maximum time, in seconds, a script can take to execute a JavaScript (Server-Side ActionScript) function. If its
execution takes longer than the maximum allowed time, then the script is evaluated as a runaway script and its
execution is terminated. Setting a maximum time to execute a script prevents infinite looping in scripts.

The default value is 0 and no checks are performed to detect runaway scripts. This setting may be useful in a
debugging environment. In a production environment, after the applications and scripts have been thoroughly
tested, you should set this element to a more realistic value that does not impose limits on the time scripts take to
execute.

Example

<MaxTimeOut>0</MaxTimeOut>

See also

RuntimeSize, MaxGCSkipCount, ScriptLibPath,FileObject, XMLSocket, NetConnection

MaxUnprocessedChars
Specifies how much data can be received from an XML server (without receiving an end tag) before XMLSocket
closes the connection. This can be overridden by each XMLSocket by specifying the property,
XML.maxUnprocessedChars, but that number cannot exceed the number specified in this element.

Example

<MaxUnprocessedChars>4096</MaxUnprocessedChars>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

115

See also

XMLSocket

MaxWait
This element specifies the number of seconds to wait before the server sends data to the client.

Increasing this number provides a more accurate bandwidth figure, but it also forces the client to wait longer.

Example

<MaxWait>4096</MaxWait>

See also

MaxRate, DataSize

MimeType
Specifies the default MIME (Multipurpose Internet Mail Extensions) type header sent on tunnel responses.

The server generally uses the MIME type specified by the incoming requests. The server will use the entry for the
MIMEType element only when it is unable to determine the MIME type from the incoming requests.

Example

<MimeType>application/x-fcs</MimeType>

See also

IdleAckInterval, IdlePostInterval, WriteBufferSize

MinBufferTime (Live)
Specifies the default buffer length in milliseconds for the live audio and video queue.

Example

<MinBufferTime>2000</MinBufferTime>

See also

MaxAudioLatency

MinBufferTime (Recorded)
Specifies the default buffer length in milliseconds for audio and video. Value cannot be set below this by Flash Player.

Example

<MinBufferTime>2000</MinBufferTime>

See also

Recorded

MinGoodVersion
Specifies the minimum accepted version of SWF verification allowed by the server. The default value is 0, which
allows the current and all future versions.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

116

Example

<MinGoodVersion>0</MinGoodVersion>

See also

SWFFolder, UserAgentExceptions

MsgQueue
Container element.

The elements nested within this container configure live and recorded audio.

Contained element

Live (MsgQueue), Recorded, Server

NetConnection
Container element.

The element nested within this container specifies object encoding to use for SSAS NetConnection.

Contained element

ObjectEncoding

NotifyAudioStop
Container element.

The Duration element nested within this container determines whether or not the server is notified when an audio
transmission ending on a stream is encountered.

Example

<NotifyAudioStop enabled="false"></NotifyAudioStop>

Contained element

Duration

ObjectEncoding
Specifies the default object encoding to use for SSAS NetConnection. This can be AMF0 or AMF3. The default is AMF3.

The default can be overridden for each individual NetConnection by setting the NetConnection.objectEncoding
property to either 0 for AMF0 or 3 for AMF3.

Example

<ObjectEncoding>AMF3</ObjectEncoding>

See also

NetConnection

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

117

OutChunkSize
Specifies the RTMP chunk size to use in all streams for this application. Stream content breaks into chunks of this
size in bytes. Larger values reduce CPU usage, but also commit to larger writes that can delay other content on lower
bandwidth connections. This can have a minimum value of 128 bytes and a maximum value of 65536 bytes. The
default value is 4096.

Note that older clients might not support chunk sizes larger than 1024 bytes. If the chunk setting is larger than these
clients can support, the chunk setting is capped at 1024 bytes.

Example

<OutChunkSize>4096</OutChunkSize>

See also

Bandwidth, BandwidthCap, BandwidthDetection, MsgQueue, HTTPTunnel, MaxMessageSizeLosslessVideo

OverridePublisher
Deprecated; see the PublishTimeout element.

Specifies whether a second client is able to take over the ownership of a live stream when the stream is already
published by another client. Default is false. If set to true, add application logic to avoid stream name collision.

Example

<OverridePublisher>true</OverridePublisher>

See also

Audio, Live (StreamManager), SendDuplicateStart, SendDuplicateOnMetaData

Password
Specifies the password for connecting to the proxy.

See also

Host, Port, Type, Tunnel, Username

Port
Specifies the proxy port to connect to, if it is not specified as part of the host in the Host element.

See also

Host, Password, Type, Tunnel, Username

Prioritization
Specifies whether outgoing messages are prioritized by message type when sending across a server-to-server
connection. This setting is relevant for multipoint publishing. By default, prioritization is set to false, which is the
correct setting to avoid possible latency when server-side NetStream objects are used to publish messages to remote
servers. Messages are sent out through one channel and all messages have the same priority.

If the value is set to true, the server sends messages through multiple channels and prioritizes messages based on
the message type, as follows (where 1 has the highest priority):

1 Data

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

118

2 Audio

3 Video

See also

Server

Process
Container element.

The elements nested within this container determine how a core process is managed.

The following table lists descriptions of the contained elements.

Contained element

Scope, Distribute, LifeTime, MaxFailures, RecoveryTime,

Proxy
Container element.

The elements nested within this container configure the HTTP Proxy settings.

Contained element

Host, Port, Type, Tunnel, Username, Password

PublishTimeout
Specifies how long in milliseconds the server waits to receive a response from a publisher when another client tries
to publish to the same stream.

If a client tries to publish to the same live stream that is being published by another client, Flash Media Server pings
the first publisher and waits to receive a response. If the first publisher fails to respond within the time specified in
this tag, the server allows the second publisher to take over the live stream. The default value is 2000 milliseconds.
To prevent the server from pinging the first client, disable this setting by setting the value of the tag to -1.

This tag replaces the OverridePublisher tag.

Value Description

Scope Specifies the level at which application instances are assigned to core processes. Scopes have an enclosing
relationship with a strict ordering: adaptors contain virtual hosts, which contain applications, which contain
instances, which contain clients.

Distribute Specifies how to distribute application instances to processes. The value of the Distribute tag must be
a scope that is lower in order than the value in the Scope tag (for example, if the value of Scope is
adaptor, the value of Distribute can be vhosts, apps, insts, or clients). Distribution may
be turned off by setting numproc to 0 or 1.

LifeTime Specifies the lifetime of core processes. Process rollover happens only when the Scope element is set to
inst.

MaxFailures The value for this element determines the maximum number of core process failures that can occur before
a core process is disabled.

RecoveryTime Specifies the recovery time for a core.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

119

Queue
Container element; contains elements that configure the settings of the message queue. A message queue is used to
buffer incoming messages from the publisher so that the server can send messages in chunks to the subscribers. You
can disable queuing so that individual messages are immediately sent to subscribers. To disable queuing, set the
enabled attribute to false.

Contained element

MaxQueueSize, MaxQueueDelay, FlushOnData, AggregateMessages (Queue)

Recorded
Container element.

The element nested within this container specifies the ratio of buffer length used by the server-side stream to the live
buffer.

Contained element

MinBufferTime (Recorded)

RecoveryTime
Specifies the recovery time for a core.

The server will not launch a core process until some minimum recovery time has elapsed. The time lag for recovery
can avoid a denial-of-service action, which happens when a faulty core process consumes all CPU time by repeatedly
launching itself.

The recovery time for a core process is specified, in seconds. A value of 0 disables any checking for process failures.

Note: Loading an application with the Flash Media Administration Server tools or APIs bypasses this check.

Example

<RecoveryTime>300</RecoveryTime>

See also

Scope, Distribute, LifeTime, MaxFailures

Redirect
Container element.

The elements nested within this container configure the settings for redirecting the HTTP connection.

Contained element

Allow, Max, UnrestrictedAuth

ResyncDepth
This element instructs the server to resynchronize a shared object file. The shared object is resynchronized when its
version number is greater than the head version minus the current version. The default value of -1 sends a resyn-
chronized version of the file with every connection.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

120

Example

<ResyncDepth>-1</ResyncDepth>

See also

StorageDir, DuplicateDir, LockTimeout, AutoCommit, MaxProperties, MaxPropertySize

Reuse
This element configures whether or not the server explicitly closes the HTTP connection after each transfer. The
default is to reuse connections. Set this to false to use a new connection after every transfer.

Example

<Reuse>true</Reuse>

See also

MaxTimeOut (Connections), Interface

RollOver
Specifies how many seconds a core process can be in use before the server creates a new core process.

After the time limit for a core is reached, a new core is instantiated. All subsequent connections are directed to the
new core.

The rollover functionality is disabled by default. The default value is 0 (seconds). For more information on rollover
processes, see Configure how applications are assigned to server processes.

Example

<Rollover>0</RollOver>

See also

MaxCores

RuntimeSize
Specifies the maximum size in kilobytes that a particular application instance can use to run Server-Side Action-
Script code before the server removes unreferenced and unused JavaScript objects.

The default size is 1024 kilobytes, which is the equivalent of 1 megabyte. The lower and upper limits on the size of
the JavaScript engine are 10 kilobytes and 51200 kilobytes (50 megabytes). The default value applies when the engine
size lies outside of these limits.

If your application consumes a significant amount of memory, you must increase the engine size. If you create a new
script object that will cause the runtime size of the application instance to exceed the value of this element, an out-
of-memory error occurs and the application instance is shut down. In most cases, increasing the engine size to 30720
(30 MB) is sufficient to run intensive Server-Side ActionScript operations.

Example

<RuntimeSize>1024</RuntimeSize>

See also

MaxGCSkipCount, MaxTimeOut (JSEngine), ScriptLibPath, FileObject, XMLSocket, NetConnection

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

121

Scope
This element determines the level at which application instances are assigned to core processes.

Starting Flash Media Server starts a process called FMSMaster.exe (Windows) or fmsmaster (Linux). Application
instances run in processes called FMSCore.exe (Windows) fmscore (Linux). The master process is a monitor that
starts core processes when necessary. Only one master process can run at a time, but many core processes can run at
the same time.

Settings in an Application.xml file in a virtual host folder apply to all applications running in that virtual host.
Settings made in an Application.xml file in an application’s folder apply only to that application.

The following table lists the values available for the Scope element.

Example

<Scope>vhost</Scope>

See also

Distribute, LifeTime, MaxFailures, RecoveryTime

ScriptLibPath
This element is a list of paths delimited by semicolons instructing the server where to look for server-side scripts
loaded into a main.asc file with the load() method.

These paths are used to resolve a script file that is loaded with the load API. The server first looks in the location
where the main.asc or application_name.asc file is located. If the script file is not found there, the script engine
searches, in sequence, the list of paths specified in this element.

Example

<ScriptLibPath>${APP.JS_SCRIPTLIBPATH}</ScriptLibPath>

See also

RuntimeSize, MaxGCSkipCount, MaxTimeOut (JSEngine), FileObject, XMLSocket, NetConnection

SendDuplicateOnMetaData
Specifies if an onMetaData message is sent at the beginning of the video file for all commands, including play, seek,
and unpause. The default value is true.

The following values are available:

• true sends onMetaData for play, seek, and unpause commands.

• false sends onMetaData for play only.

Value Description

adaptor All application instances in an adaptor run together in a process.

vhost All application instances in a virtual host run together in a process. This is the default value.

app All instances of a single application run together in a process.

inst Each application instance runs in its own process. If you choose this value, you must also set the
Distribute numprocs attribute to a value greater than 1.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

122

• once falls back to FMS 1.x behavior and sends onMetaData based on the start position, regardless of the
command. If no onMetaData is found at the start position, no onMetaData is sent.

Example

<SendDuplicateOnMetaData>true</SendDuplicateOnMetaData>

See also

SendDuplicateStart

SendDuplicateStart
Specifies if status message NetStream.Play.Start is sent for all commands, including play, seek, and unpause. If
set to false, only the play command receives the start message.

Example

<SendDuplicateStart>true</SendDuplicateStart>

See also

SendDuplicateOnMetaData, OverridePublisher

SendSilence
Container element.

The Interval element nested within this container configures the settings for sending silent messages.

Contained element

Interval

Server
Container element.

Contains two elements: BufferRatio, which specifies the ratio of the buffer length used by the server-side stream
to the live buffer, and Prioritization, which specifies whether to prioritize outgoing messages for server-to-server
connections.

Contained elements

BufferRatio, Prioritization

ServerToClient (Bandwidth)
Specifies the maximum bandwidth in bytes per second that the server can use for sending data downstream to the
client.

The default bandwidth is 250,000 bytes per second.

Example

<ServerToClient>250000</ServerToClient>

See also

ClientToServer (Bandwidth)

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

123

ServerToClient (BandwidthCap)
Specifies the maximum bandwidth in bytes per second that the server can use for sending data downstream to the
client.

The default bandwidth is 10,000,000 bytes per second.

Example

<ServerToClient>10000000</ServerToClient>

See also

ClientToServer (BandwidthCap)

SharedObjManager
Container element.

The elements nested within this container configure the Shared Object Manager setting of an application.

Contained element

StorageDir, DuplicateDir, ResyncDepth, LockTimeout, AutoCommit, MaxProperties, MaxPropertySize

StorageDir
Specifies the physical location where shared objects or streams are stored.

By default the physical location is not set. Set this element only if the files for shared objects or recorded streams must
be stored in a location other than the application directory.

Example

<StorageDir>C:\myapp\sharedobjects\</StorageDir>
<StorageDir>C:\myapp\streams\</StorageDir>

See also

DuplicateDir

StreamManager
Container element.

The elements in this section configure the Stream Manager settings for this application.

Contained elements

StorageDir, DuplicateDir, CachePrefix, CacheUpdateInterval, MaxBufferRetries, ThrottleBound-
aryRequest, ThrottleLoads, ThrottleDisplayInterval, EnhancedSeek, KeyFrameInterval, MaxStreams-
BeforeGC, Audio, Live (StreamManager), SendDuplicateStart, SendDuplicateOnMetaData

Subscribers
This element instructs the server to combine sound samples only if there are more than the default number of
subscribers to that stream. The default number of subscribers is 8.

Example

<Subscribers>8</Subscribers>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

124

See also

LoCPU, HiCPU, MaxSamples

SWFFolder
Specifies a single folder or a semicolon-delimited list of folders containing copies of client SWF files that can be
authenticated for connecting this application to this server.

These SWF files are used to authenticate connecting SWF files. The default value is the application's folder appended
with /SWFs. Use a semicolon to separate multiple directories. SWF files located under an instance named folder can
only connect to that specific instance.

Example

For an application named myApplication located at C:\applications\, authenticating SWF files should be
placed in C\applications\myApplication\SWFs.

To allow SWFs from two different directories named “SWFs” and “D”, use
C:\apps\app1\SWFs;D:\apps\app1\SWFs

See also

MinGoodVersion, UserAgentExceptions

SWFVerification
Container element.

Specifies how the server verifies client SWF files before allowing the files to connect to an application. Verifying SWF
files is a security measure that prevents someone from creating their own SWF files that can attempt to stream your
resources.

Note: SWF files connecting to Flash Media Administration Server cannot be verified.

The following table lists the values available for the SWFVerification element.

Example

<SWFVerification enabled="false">
<SWFFolder></SWFFolder>

Element Description

SWFVerification Set the enabled attribute to true or false to turn this feature on or off. The default value is false.

SWFFolder A single folder or a semicolon-delimited list of folders that contain copies of client SWF files for an applica-
tion. These SWF files are used to verify connecting SWF files. The default value is the application's folder
appended with /SWFs. For example, for an application called myApplication, if there isn’t a value set for this
element, verifying SWF files should be placed in the applications/myApplication/SWFs folder.

MinGoodVersion Specifies the minimum version of SWF verification to accept. The default value is 0, which allows current and
all future versions.

UserAgentExceptions Container. Contains the Exception element..

Exception A user agent to except from verification. Use the from and to attributes to indicate the lowest and highest
versions to except. This is a string comparison, with editing to make all numeric fields equal length. For more
information, see the comments in the Application.xml file.

Cache Container; contains the TTL and UpdateInterval elements. Configures how the cache behaves. SWFVer-
ification data is stored in the cache.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

125

<MinGoodVersion></MinGoodVersion>
<UserAgentExceptions>

<Exception to="" from=""/>
</UserAgentExceptions>
<Cache>

<TTL></TTL>
<UpdateInterval></UpdateInterval>

</Cache>
</SWFVerification>

Contained elements

SWFFolder, MinGoodVersion, UserAgentExceptions, Cache

ThrottleBoundaryRequest
Controls the maximum number of concurrent boundary requests per recorded stream. When streaming through a
proxy server, the boundary information of video segments are sent to the proxy server by request.

The default value is 8.

Example

<ThrottleBoundaryRequest enable=”false”>8</ThrottleBoundaryRequest>

See also

ThrottleDisplayInterval, ThrottleLoads

ThrottleDisplayInterval
Controls the interval at which the server displays the throttle queue length. The default value is 64, which means the
server displays the message 1 out of 64 times when the throttle queue is full.

Example

<ThrottleDisplayInterva>64</ThrottleDisplayInterval>

See also

ThrottleBoundaryRequest, ThrottleLoads

ThrottleLoads
Controls the maximum number of concurrent segment loads per recorded stream. When streaming through a proxy
server, video segments are sent to the proxy server by request. The default value is 8.

Example

<ThrottleLoads enable=”true”>8</ThrottleLoads>

See also

ThrottleBoundaryRequest, ThrottleDisplayInterval

Tunnel
Specifies whether or not to tunnel all operations through a given HTTP proxy. The default setting is false.

Example

<Tunnel>false</Tunnel>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

126

See also

Host, Port, Type, Username, Password

TTL
Specifies in minutes how long each SWF file remains in the cache. The default value is 1440 minutes (24 hours).

See also

Cache, UpdateInterval

Type
Specifies the type of proxy being connected to. The value for this element can be HTTP or SOCKS5. The default is HTTP.

Example

<Type>HTTP</Type>

See also

Host, Port, Tunnel, Username, Password

UnrestrictedAuth
A Boolean value that determines whether or not to allow sending the user name/password combination with each
HTTP redirect. Sending the user name/password combination is useful only if the Allow element permits redirec-
tions. The default setting is true.

Example

<UnrestrictedAuth>true</UnrestrictedAuth>

See also

Allow, Max

UpdateInterval
Specifies the maximum time in minutes to wait for the server to scan the SWF folders for updates when there is a
miss in the cache. The default value is 5 minutes.

See also

Cache, TTL

UserAgent
Container element.

The settings for clients vary according to whether the Flash Player platform is Windows or Macintosh. Setting the
value 0x01 will configure the player and platform for silent messages.

Contained element

Bits

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

127

UserAgentExceptions
Container element.

Contains an element that specifies a user agent that should be an exception to authentication. Use the to and from
attributes to indicate the lowest and highest versions to except.

Example

<UserAgentExceptions>
<Exception to=”WIN 9,0,28,0” from=”WIN 9,0,28,0”</Exception>

</UserAgentExceptions>

Contained element

Exception

Username
Specifies the user name for connecting to the edge.

See also

Host, Port, Type, Tunnel, Password

Verbose
This element determines whether or not the server outputs verbose information during HTTP operations.

Example

<Verbose>false</Verbose>

See also

HTTP1_0, Connections, Proxy, Redirect

VideoSampleAccess
Allows the client application to access the raw uncompressed video data in a stream. By default, this element is
disabled. To enable it, set the enable attribute to true. In the tag, specify a list of semicolon-delimited folders to which
client applications have access. When this element is enabled, all clients can access the video data in streams in the
specified folders. To enable access to all video data streamed by the server, specify / in the tag.

The folder path is restricted to the application’s streams folder or folders, so do not use absolute paths in the list of
folders.

While you can also enable access through Server-Side ActionScript, this element allows access to the data without
requiring Server-Side ActionScript. You can also override this element with the Access plug-in or Server-Side
ActionScript.

Example

If an application is configured to store streams in folders C:\low_quality and C:\high_quality, the configu-
ration to allow access to sample those streams is as follows:

<VideoSampleAccess enabled="true">low_quality;high_quality</VideoSampleAccess>

See also

AudioSampleAccess

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

128

VirtualDirectory
Specifies virtual directory mappings for Server-Side ActionScript File objects (under the JSEngine node) and for
video files for a vod application (under the StreamManager node).

Virtual directories lets you specify file directories for different applications. If the beginning portion of a file path
matches the specified virtual directory, then the storage location of the file becomes the file path of the virtual
directory.

In an application-specific Application.xml file, you can use the VirtualDirectory element to specify a directory to
use for vod applications. Put video files in this directory to make them instantly streamable, without writing any
code.

For more information, see comments in the Application.xml file and Mapping virtual directories to physical direc-
tories.

Example

<VirtualDirectory>virtual_dir_name;physical_dir_path</VirtualDirectory>

See also

FileObject

WriteBufferSize
Specifies in kilobytes the size of the write buffer. The default size is 16 KB.

Example

<WriteBufferSize>16</WriteBufferSize>

See also

IdlePostInterval, IdleAckInterval, MimeType

XMLSocket
Container element.

Contains an element that specifies how much data can be received from the XML server (without receiving an end
tag) before XMLSocket closes the connection. This can be overridden by each XMLSocket by specifying the property
XML.maxUnprocessedChars, but that number cannot exceed the number specified in this element

Example

<XMLSocket>
<MaxUnprocessedChars>4096</MaxUnprocessedChars>

</XMLSocket>

Contained element

MaxUnprocessedChars

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

129

Logger.xml file
The Logger.xml file is located at the root level of the conf directory and is the configuration file for the logging file
system. Logger.xml contains the elements and information used to configure Flash Media Server log files. You can
edit this file to add or change configuration information, including the location of the log files. The default location
of the log files is in the logs directory in the server installation directory.

Log files are written in English. Field names displayed in the log file are in English. Some content within the log file,
however, may be in another language, depending on the filename and the operating system. For example, in the
Access.log file, the columns x-sname and x-suri-stem show the name of the stream. If the name of the recorded
stream is in a language other than English, the stream’s name is written in that language, even if the server is running
on an English-language operating system.

The Logging section in the Server.xml enables or disables the log files. Elements to configure the log files are in the
Logger.xml file.

To see the element structure and default values in Logger.xml, see the Logger.xml file installed with Flash Media
Server in the RootInstall/conf/ directory.

Note: Log file rotation cannot be disabled. To effectively turn off rotation, choose a large maximum size and a long
maximum duration for the log files.

Summary of elements

Logger.xml element Description

Access Container element; contains elements used to configure the Access log file settings.

Application Container element; contains elements to configure the Application log file settings.

AuthEvent Container element; contains elements to configure the Authorized Events log file settings.

AuthMessage Container element; contains elements to configure the Authorized Messages log file settings.

Delimiter Specifies which delimiter to use when separating the fields in the log file.

Diagnostic Container element; contains elements to configure the diagnostic log file settings.

Directory Specifies how many lines to write to log file before repeating the field headers.

DisplayFieldsHeader Specifies how many lines to write to the log file before repeating the field headers.

EscapeFields Formatting element; specifies whether or not unsafe characters in the log file are escaped.

Events Specifies the events written to the Access log file.

Fields Specifies which fields for an event are logged in the Access log file.

FileIO Container element; contains elements to configure the File IO log file settings.

FileName Specifies the name of the log files.

History Specifies the maximum number of log files to keep.

HostPort Specifies the IP and port number of the log server.

Logger Root element; this element is a container for all the other elements.

LogServer Container element; contains elements to configure the server to send messages to a remote log server.

MaxSize Specifies the maximum size of the log files.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

130

Access
Container element.

The elements nested within this container configure the Access log settings.

Contained elements

LogServer, Directory, FileName, Time

Application
Container element.

The elements nested within this container configure the Application log file settings.

Contained elements

Directory, Time, Rotation

AuthEvent
Container element.

The elements in this section configure the Authorized Events log file settings.

Contained elements

LogServer, Directory. FileName, Time, Rotation, Events, Fields, Delimiter, QuoteFields, EscapeFields

AuthMessage
Container element.

The elements in this section configure the Authorized Messages log file settings.

Contained elements

Directory, Time. Rotation

Delimiter
Specifies whether or not to use single quotation marks (’) as a delimiter to separate the fields in the log file.

A delimiter is used to separate the fields in the log file. The use of the number sign (#) as a delimiter is not recom-
mended, since # is used as the comment element in the Logger.xml file.

QuoteFields Formatting element; specifies whether or not to use quotation marks to surround those fields in the
log file that include a space.

Rename Specifies new name for log files when rotation occurs.

Rotation Container element; contains elements to configure the rotation of the log files.

Schedule Specifies how frequently the log files are rotated.

ServerID Identifies by IP address the server whose logged events are being recorded.

Time Specifies the time zone for a log file.

Logger.xml element Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

131

The following characters are not allowed as delimiters:

• triple quotation marks (’’’)

• paired double quotation marks ("")

• commas (,)

• colons (:)

• hyphens (-)

See also

Directory, EscapeFields, QuoteFields

Diagnostic
Container element.

The elements in this section configure the diagnostic log file.

Contained elements

Directory, Time. Rotation

Directory
Specifies the directory where the log files are located.

By default, the log files are located in the logs directory in the server installation directory.

Example

<Directory>${LOGGER.LOGDIR}</Directory>

See also

Time, Rotation

DisplayFieldsHeader
Formatting element. Specifies how many lines to write to the log file before repeating the field headers. The default
line count is 100 lines.

Example

<DisplayFieldsHeader>100</DisplayFieldsHeader>

See also

Delimiter, EscapeFields, QuoteFields

EscapeFields
Formatting element. This element controls whether or not the fields in the log file are escaped when unsafe
characters are found. This optional flag can be set to enable or disable. By default, it is set to enable.

The unsafe characters are as follows: the space character; open or closed angle brackets (< >); a double quotation
mark ("); the number sign (#); the percent sign (%); open or closed curly braces ({ }); bars (|); the carat (^); the tilde
(~); square brackets ([]); and the apostrophe (’).

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

132

Example

<EscapeFields>enable</EscapeFields>

See also

LogServer, Directory, FileName, Time, Rotation, Events, Fields, Delimiter, and QuoteFields

Events
Events are written to the log file.

The following table lists the events recorded in the Access log file. Events are logged in a semicolon-separated list.
The keyword * instructs Flash Media Server to log all events.

The following events display a status code.

Event Category Description

app-start application Application instance starts.

app-stop application Application instance stops.

connect application Client connects to the server.

connect-pending application Client connects to the server, waiting for the script to authenticate.

disconnect application Client disconnects.

pause application Client pauses a recorded stream.

play application Client plays a recorded or live stream.

publish application Client publishes a live stream.

record application Client begins recording a stream.

recordstop application Client stops recording a stream.

seek application Client jumps to a new location within a recorded stream.

server-start application Server has started.

server-stop application Server has stopped.

stop application Client stops playing a recorded or live stream or stops publishing a live stream.

unpause application Client resumes a stream.

unpublish application Client unpublishes a live stream.

vhost-start application A virtual host has started.

vhost-stop application A virtual host has stopped.

Field Status Code Description

connect-pending 100 Waiting for the application to authenticate.

connect 200 Successful connection.

302 Application currently unavailable.

400 Bad request; client connected to server using an unknown protocol.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

133

See also

Fields

Fields
Specifies which fields for an event are logged in the Access log file.

Fields are associated with the events found in the Access log file. The field specification is a semicolon-separated list
of one or more fields associated with an event in the log file.

The keyword * specifies that all fields are to be logged. Fields without data are left empty. Adobe recommends that
you include the following fields in the fields to be logged: the type, category, date, and time fields.

The following table is a complete list of fields associated with events in the Access log file. Not every field is associated
with each event in the log file.

401 Connection rejected by the application script.

403 Connection rejected by access module.

404 Application not found.

409 Resource limit exceeded.

413 License limit exceeded.

500 Server internal error.

502 Bad gateway.

503 Service unavailable; for example, too many connections pending for authorization
by access module.

play 200 Successful.

400 Bad request (invalid arguments).

401 Access denied by application.

403 Play forbidden by stream module.

404 Stream not found.

415 Unsupported media type.

500 Server internal error.

publish 200 Successful.

400 Bad request (invalid arguments).

401 Access denied by application.

409 Stream is already being published.

415 Unsupported media type.

500 Server internal error.

stop 200 Successful.

408 Stream stopped because client disconnected.

Field Status Code Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

134

Field Event(s) Description

x-event application Type of event.

x-category application Event category.

date application Date on which the event occurred.

time application Time at which the event occurred.

tz application Time-zone information.

x-ctx application Event-dependent context information.

x-pid application Server process ID.

x-cpu-load application CPU load.

x-mem-load application Memory usage (as reported by the getServerStats() method).

x-adaptor application Adaptor name.

x-vhost application Vhost name.

x-app application Application names.

x-appinst application Application instance names.

c-ip application Client IP address.

c-proto application Connection protocol: RTMP or RTMPT.

s-uri application URI of the application.

c-referrer application URI of the referrer.

c-user-agent application User agent.

c-client-id application Client ID.

cs-bytes application This field shows the number of bytes transferred from the client to the server.

This information can be used to bill customers per session. To calculate the band-
width usage per session, subtract the value of cs-bytes in the connect event
from the value of cs-bytes in the disconnect event.

sc-bytes application This field shows the number of bytes transferred from the server to the client.

This information can be used to bill customers per session. To calculate the band-
width usage per session, subtract the value of sc-bytes in the connect event
from the value of sc-bytes in the disconnect event.

x-sname application Stream name.

x-file-size application Stream size in bytes.

x-file-length application Stream length, in seconds.

x-spos application Stream position.

cs-stream-bytes application This field shows the number of bytes transferred from the client to the server per
stream.

To calculate the bandwidth usage per stream, subtract the value of cs-stream-
bytes in the publish event from the cs-stream-bytes in the unpublish
event.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

135

See also

Events

FileIO
Container element.

The elements in this section configure the File IO log file settings.

Contained elements

Directory, Time, Rotation

FileName
Specifies the name of the Access log file.

The Access log filename includes a date stamp and version number. Y represents the year of its creation; the format
YYYY must be used. M represents the month of its creation; the formats M or MM are both allowed. D represents
the day of the month of the file’s creation; the formats D or DD are both allowed. N represents the version number
of the file. Note that there is no limit on number of versions.

The repetition of a letter represents the number of digits. For example, M represents 4 (April). MM represents 04
(April).

Example

access.2007103043.log

sc-stream-bytes application This field shows the number of bytes transferred from the server to the client per
stream.

To calculate the bandwidth usage per stream, subtract the value of sc-stream-
bytes in the play event by the value of sc-stream-bytes in the stop event.

cs-uri-stem application Stem portion of the s-uri (omitting query) field.

cs-uri-query application Query portion of s-uri.

x-sname-query application Query portion of stream URI specified in play or publish.

x-file-name application Full path of the file representing x-sname stream.

x-file-ext application Stream type, such as FLV or MP4.

s-ip application IP address or addresses of the server.

x-duration application Duration of a stream or session event.

x-suri-query application Same as x-sname-query.

x-suri-stem application This is a composite field: cs-uri-stem + x-sname + x-file-ext.

x-suri application This is a composite field: cs-uri-stem + x-sname + x-file-ext + x-sname-
query.

x-status application For a complete description of the x-status codes and descriptions, see Diagnostic
Log Messages.

x-sc-qos-bytes application Bytes transferred from server to client for quality of service

Field Event(s) Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

136

This example identifies version 43 of the access log file for October 30, 2007.

See also

LogServer, Directory, Time, Rotation, Events, Fields, Delimiter, QuoteFields, and EscapeFields

History
Specifies the maximum number of log files to keep.

The files are named access.01.log, access.02.log, access.03.log, and so on. The default number of files to retain is 5.

Example

<History>5<History>

See also

MaxSize, Schedule, Rename

HostPort
Specifies the IP and port of the log server.

Example

<HostPort>xxx.xxx.xxx.xxx:1234</HostPort>

See also

ServerID, DisplayFieldsHeader

Logger
Root element.

The Logger element is a container for all the other elements in Logger.xml.

LogServer
Container element.

The elements nested in this section configure the server to send messages to a remote log server.

Contained elements

HostPort, ServerID, DisplayFieldsHeader

MaxSize
Specifies the maximum log file size in bytes. The default file size is 10240 KB, or approximately 1 MB.

Example

<Maxsize>10240</MaxSize>

See also

Schedule, History, Rename

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

137

QuoteFields
Formatting element. Specifies whether or not to use quotation marks to surround those fields in the log file that
include a space.

This element can be set to enable or disable. By default, it is set to disable.

Example

<QuoteFields>disable</QuoteFields>

See also

LogServer, Directory, FileName, Time, Rotation, Events, Fields, Delimiter, EscapeFields

Rename
Specifies new name for log files when rotation occurs. The default is true.

If Rename is set to true, application.00.log is renamed application.01.log, and application.01.log is renamed appli-
cation.02.log (and so on) when it is time to rotate the log files. This occurs until the maximum history setting is
reached. The log file with the highest version number keeps the oldest log history.

If Rename is set to false, a new log file is created with the next available version when rotation occurs. The log file
with the lowest version number keeps the oldest log history.

Examples

<Rename>true</Rename>

See also

MaxSize, Schedule, History

Rotation
Container element.

The elements in this section configure the rotation of the log files.

Contained elements

MaxSize, Schedule, History, Rename

Schedule
Specifies the rotation schedule for the log files.

There are two types of scheduling: daily rotation and rotation that occurs when the log exceeds a specified length.

Examples

<Schedule type="daily"></Schedule>

If the type attribute is daily, the server rotates the log files every 24 hours.

<Schedule type="hh:mm"></Schedule>

If the type attribute is hh:mm, the timestamp 00:00 causes the file to rotate every midnight.

<Schedule type="duration"></Schedule>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

138

If the type attribute is duration, rotation occurs when the duration of the log exceeds a specified length. The
duration is specified in minutes.

See also

MaxSize, History, Rename

ServerID
By default, the value of the ServerID element is the IP address of the server whose events are being logged.

Example

<ServerID>xxx.xxx.xxx.xxx:1234</ServerID>

See also

HostPort, DisplayFieldsHeader

Time
The Time field in a log file can be logged either in UTC (GMT) or local time. Valid values are utc, gmt, or local.

The setting for the Time element can be used to override the server-wide configuration. The default is local time.

See also

The Logging container in the Server.xml file.

Server.xml file
The Server.xml file is located at the root level of the conf directory. Edits made in the Server.xml file affect the entire
server unless they are overridden in another configuration file.

To see the element structure and default values in Server.xml, see the Server.xml file installed with Flash Media
Server in the RootInstall/conf/ directory.

Summary of elements

Server.xml element Description

Access Container element; contains the elements used to configure the Access log settings.

ACCP Container element; contains elements used to configure the Admin Core Communication Protocol
(ACCP).

ActiveProfile Specifies the limits enforced by the server on each license key.

Admin Container element; contains the elements used to configure the RTMP protocols for the
FMSAdmin.exe process.

AdminElem Specifies the format used to display an element name in an HTTP command.

AdminServer Container element; contains elements used to configure the Flash Media Administration Server.

Allow Specifies the administrator connections that should be accepted.

Application Container element; the Enable element in this container enables or disables the log file.

ApplicationGC Specifies in minutes how often to check for and remove unused applications.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

139

AuthEvent Container element. The Enable element nested within the AuthEvent container specifies whether
logging of events from the authorization adaptor is enabled.

AuthMessage Container element. The Enable element nested within the AuthMessage container specifies whether
logging of messages from the authorization adaptor is enabled.

AutoCloseIdleClients Specifies if idle clients should be closed automatically.

Cache Container element; contains elements that configure the cache setting for SWF verification.

CheckInterval Specifies the interval at which the server checks for active client connections.

Connector Container element; contains elements used to configure the connector subsystem. Provides connec-
tors that allow application scripts to connect to other Flash Media Servers or HTTP servers.

Core Container element; contains elements used to configure the protocols for the FMSCore.exe process.

CoreExitDelay Specifies the wait time for an idle core to exit on its own before it is removed from the server, in
seconds.

CoreGC Specifies how often, in seconds, to check for and remove idle cores.

CoreTimeout Specifies the timeout value, in seconds, for detecting unresponsive cores.

CPUMonitor Specifies, in seconds, how often to monitor CPU usage.

Deny Specifies administrator connections that should be ignored.

Diagnostic Container element; contains element to enable the diagnostic log file.

ECCP Container element; contains elements to configure the edge core communication protocol.

Edge Container element; contains elements to configure the RTMP protocol for the FMSEdge.exe process.

EdgeCore Container element; these elements control the IPC message queues used by edge and core processes
to communicate with each other.

Enable A Boolean value that enables or disables the Access logs, Application logs, or diagnostic logs.

FileCheckInterval Specifies, in seconds, how often the server reloads the video segment in the cache when there is a file
change. The default value is 120 seconds.

FileIO Container element; contains an element that specifies if file IO logging is enabled.

FLVCache Container element; contains elements that control the size and features of the FLV cache.

FLVCacheSize Specifies the percentage of total physical memory on the system that the FLV cache may occupy.

FreeMemRatio Sets the maximum percentage of total memory that the total pool size may occupy.

FreeRatio Specifies the percentage of the message cache to be consumed by the free list on a per-thread basis.

GCInterval Specifies how often to remove idle handles.

GID Contains the group ID of the server process.

GlobalQueue Container element; these elements control the IPC message queue used by processes to communi-
cate with each other.

GlobalRatio Specifies the percentage of the message cache that can be consumed by the free list on a global basis.

HandleCache Container element; contains elements that configure the size and features of the handle cache.

HeapSize Specifies the maximum size of the shared memory heap used for a IPC message queue.

HostPort Specifies the IP address and port that the Flash Media Administration Server binds to.

Server.xml element Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

140

HTTP Container element; contains elements to configure the HTTP connector, which is used by remote sites
for accessing Flash Media Server.

IdleTime Specifies the amount of time to wait before releasing cached handles.

IPCQueues Container element; contains elements to configure the IPC (interprocess communication) queues.

LargeMemPool Container element; contains elements to configure the large memory pool.

LicenseInfo Specifies key information about server licensing.

LicenseInfoEx Contains license keys added using the Administration Console. For more information about license
keys, see the LicenseInfo element.

LocalHost Specifies the Flash Media Server IP loopback address.

Logging Container element; contains elements to perform the overall logging configuration.

Mask Contains a three-digit octal value used by the Linux umask (user permissions mask) command to set
a file creation mask.

Master Container element; contains elements to configure the resource limits for the master server.

MaxAge Specifies the maximum reuse count before freeing the cache unit.

MaxCacheSize Specifies the maximum size of the cache.

MaxCacheUnits Specifies the maximum free units in the cache.

MaxConnectionQueueSize Specifies the maximum number of connection requests that can be pending.

MaxConnectionRate Specifies the maximum number of incoming connections per second that the server’s socket listener
accepts.

MaxConnectionThreads Specifies the maximum number of threads used to process connection requests.

MaxConnectionThreads Specifies the maximum number of threads used to process connection requests.

MaxIdleTime Specifies the maximum idle time allowed before client is disconnected.

MaxIOThreads Specifies the maximum number of threads that can be created for I/O processing.

MaxKeyframeCacheSize Specifies the maximum number of keyframes per FLV file in the cache.

MaxNumberOfMessages Specifies the maximum number of messages that the buffer holds before the messages are
committed to file.

MaxQueueSize Specifies the maximum number of pending IPC messages that can be in queue at a given time.

MaxSize (FLVCache) Specifies the maximum size of the FLV cache.

MaxSize (HandleCache) Specifies the maximum number of handles to cache.

MaxSize (RecBuffer) Specifies the maximum size to which the buffer can grow before messages are committed to file.

MaxTimestampSkew Specifies the maximum gap between two adjacent messages when comparing the messages’
timestamps with the real time.

MaxUnitSize Specifies the maximum size, in kilobytes, of a memory chunk allowed in a memory pool. The default
size is 16 KB.

MessageCache Container element; contains elements to control how the message cache keeps messages used by
Flash Media Server.

MinConnectionThreads Specifies the minimum number of threads in the pool for I/O operations.

Server.xml element Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

141

MinGoodVersion Specifies the minimum accepted version of SWFVerification allowed by the server.

MinIOThreads Specifies the minimum number of threads that can be created for I/O operations.

MsgPoolGC Specifies how often the server checks for and removes content in the global message pool.

NetworkingIPv6 Enables or disables IPv6.

NumCRThreads Specifies the number of completion routine threads for edge server I/O processing in WIndows 32-
byte systems.

Order Specifies the order in which to evaluate the Allow and Deny elements.

Process (AdminServer) Container element; contains elements that configure UID and GID for the Administration Server.

Process (Server) Container element; contains elements that configure UID and GID for all server processes.

Protocol Container element; contains elements to configure protocols and their reception.

PublicIP Specifies that if the system has multiple network ports, a public IP address should be created.

RecBuffer Container element; contains elements that configure the buffer for FLV recording.

ResourceLimits Container element; contains elements to specify the maximum resource limits of the server.

Root Root element; contains all other elements in Server.xml.

RTMP (AdminServer) Container element; contains elements to configure different versions of RTMP.

RTMP (Connector) Container element; contains elements to configure the RTMP connector.

RTMP (Protocol) Container element; contains elements to configure the RTMP protocol.

RTMPE Specifies if RTMPE (Encrypted Real-Time Messaging Protocol) can be used.

Scope Determines whether or not to write a log file for each virtual host or write only one log file for the
server.

SegmentsPool Container element; contains elements that configure how the segments pool caches segments of
video files.

Server Container element; contains elements that configure the server.

ServerDomain Specifies the host name (with domain) of the server machine.

Services Container element; contains elements to control the IPC message queue used by edge and core
processes to communicate with each other.

SmallMemPool Container element; contains elements to configure the small memory pool.

SocketGC Specifies how often to check for and remove inactive sockets.

SocketOverflowBuckets Specifies the number of overflow buckets if all slots in socket table are in use.

SocketRcvBuff The size of the client socket receive buffer, in bytes.

SocketSndBuf The size of the client socket send buffer, in bytes.

SocketTableSize Specifies the size of the direct access socket table for quick lookup.

SSL Container element; contains elements to configure the server as an SSL-enabled client for secure
communications.

SSLCACertificateFile Specifies the name of a file that contains one or more CA certificates in PEM encryption format.

SSLCACertificatePath Specifies the name of the directory containing one or more CA certificates.

Server.xml element Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

142

Access
Container element.

The elements nested within the Access container configure the Access log settings. The Access logs are located in
the RootInstall\logs directory.

Contained elements

Enable, Scope

ACCP
Container element.

The elements nested within the ACCP container configure the Admin Core Communication Protocol (ACCP). The
Flash Media Administration Server and active cores use ACCP for communications. This protocol is also used for
collecting performance metrics and issuing administrative commands to Flash Media Server cores.

When administrators connect to the server with the Administration Console, they are connecting to the Flash Media
Administration Server, which in turn connects to Flash Media Server.

Contained elements

MinIOThreads, MaxIOThreads, SocketTableSize, SocketOverflowBuckets

SSLCipherSuite Specifies the encryption ciphers to secure outgoing communications.

SSLCACertificateFile Container element; contains elements to configure the server as an SSL (Secure Sockets Layer) client
for outgoing SSL connections.

SSLRandomSeed Specifies the number of bytes of entropy to use for seeding the pseudorandom number generator
(PRNG).

SSLSessionCacheGC Specifies how often to flush expired sessions from the server-side SSL session cache.

SSLVerifyCertificate Specifies whether or not to verify the certificate returned by the server being connected to.

SSLVerifyDepth Specifies the maximum depth in the certificate chain that the server is willing to accept.

SWFFolder Specifies a folder containing SWF files that are authenticated for connecting to any application on this
server.

SWFVerification Container element; contains elements that configure how SWF files connecting to an application are
verified.

TerminatingCharacters Specifies the final characters of each log entry in log files.

ThreadPoolGC Specifies how often to check for and remove unused I/O threads.

Time Specifies the time field in a log file.

TrimSize Specifies a percentage of cached handles to remove.

TTL Specifies in minutes how long each SWF file remains in the cache.

UID Contains the server process user ID.

UpdateAccessTimeInterval Specifies how often to modify the access time of the video cache file in the proxy server when the
video file is actively used by the server.

UpdateInterval Specifies how often thread statistics are collected.

Server.xml element Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

143

ActiveProfile
Specifies the limits enforced by the server on each license key (set in LicenseInfo element). Select a profile to
determine bandwidth, connection, and other licensed limits.

See also

Process (Server), Mask, LicenseInfo

Admin
Container element.

The elements nested within the Admin container configure the RTMP (Real-Time Messaging Protocol) for the
FMSAdmin.exe process. RTMP is the protocol used for communication between Flash Player and Flash Media
Server.

Contained elements

MinIOThreads, MaxIOThreads, SocketTableSize, SocketOverflowBuckets

AdminElem
Specifies the format used to display an element name in an HTTP command. The default value is false, which
means the element name is displayed as <_x>, otherwise the element name is displayed as <elem name="x">.

The Get Active VHost feature is an extended administration command to list only the active VHosts. Get Active
VHost also includes a related command, GetActiveVHostStats, which allows administrators to query the statistics
information for all active VHosts with a single command. To display <elem name="x"> instead of <_x> in the HTTP
command, set the AdminElem element to true.

Example

<AdminElem>true</AdminElem>

See also

Process (AdminServer), Allow, Deny, Order

AdminServer
Container element.

The elements nested within the AdminServer container configure the Flash Media Administration Server.

Contained elements

RTMP (AdminServer), HostPort, SocketGC, Process (AdminServer), AdminElem, Allow, Deny, Order

Allow
Specifies the administrator connections that are to be accepted. By default, a client can connect to Flash Media
Administration Server from any domain or IP address. This potential security risk can be managed by the Allow
element. Permissible administrator connections are detailed as a comma-delimited list of host names, domain
names, and full or partial IP addresses. The keyword all can also be used.

Example

<Allow>x.foo.com, foo.com, 10.60.1.133, 10.60</Allow>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

144

or

<Allow>all</Allow>

See also

Deny, Order

Application
Container element.

The Enable element nested within the Application container enables the Application log file.

Contained element

Enable

ApplicationGC
Specifies in minutes how often the server checks for and removes unused application instances. The default interval
is 5 minutes, which is also the minimum value for this element. An application is considered idle if it has no clients
connected for longer than the amount of time specified in MaxAppIdleTime in Application.xml.

Example

<ApplicationGC>5</ApplicationGC>

See also

CPUMonitor, ThreadPoolGC, MsgPoolGC, FLVCacheSize, ResourceLimits, MaxAppIdleTime

AuthEvent
Container element. The Enable element nested within the AuthEvent container enables logging of events from the
authorization adaptor.

Contained element

Enable

AuthMessage
Container element. The Enable element nested within the AuthMessage container enables logging of messages
from the authorization adaptor.

Contained element

Enable

AutoCloseIdleClients
Container element. Determines whether or not to automatically close idle clients.

Set the enable attribute to true to close idle clients. If the enable attribute is omitted or set to false, the feature is
disabled. The default value is false.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

145

A client is active when it is sending or receiving data. Use AutoCloseIdleClients to specify how often the server
should check for idle clients. When a client has been idle longer than the maximum idle time (60 seconds by default),
the server sends a status message to the NetConnection object (the client). The server closes the client connection
to the server and writes a message to the access log. The server also writes a message such as “Client x has been idle
for y seconds” in the core and event logs.

To configure the closing of idle connections, you must enable the feature in the Server.xml file. Once you enable the
feature in the Server.xml file, you can disable the feature for individual virtual hosts in the Vhost.xml files or for
individual applications in Application.xml. The values defined in the Server.xml configuration file apply to all clients
connected to the server, unless the values are defined in the Vhost.xml file. The Vhost.xml values override the
Server.xml values. (Subsequently, the values defined in the Vhost.xml configuration file apply to all clients connected
to the virtual host, unless values are defined in the Application.xml file. The Application.xml values override the
Vhost.xml values.)

Example

<AutoCloseIdleClients enable="false">
<CheckInterval>60</CheckInterval>
<MaxIdleTime>600</MaxIdleTime>

</AutoCloseIdleClients>

Contained elements

CheckInterval, MaxIdleTime

Cache
Container element. Contains elements that configure the cache setting for SWF verification.

See also

TTL, UpdateInterval (Cache)

CheckInterval
Specifies the interval, in seconds, at which the server checks for active client connections. The default value is 60
seconds.

A client is disconnected the first time the server checks for idle connections if the client has exceeded the
MaxIdleTime value. A shorter interval results in more reliable disconnection times, but can also result in decreased
server performance.

Example

<CheckInterval>60</CheckInterval>

See also

MaxIdleTime

Connector
Container element.

The elements nested within the Connector container configure the connector subsystem. Flash Media Server
provides connectors that allow application scripts to connect to other Flash Media Servers or HTTP servers.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

146

Contained elements

HTTP, RTMP (Connector)

Core
Container element.

The elements nested within the Core container configure the RTMP protocol for the FMSCore.exe process.

Contained elements

MinIOThreads, MaxIOThreads, SocketTableSize, SocketOverflowBuckets

CoreExitDelay
Specifies how much wait time, in seconds, an idle core is given to exit on its own before it is removed from the server.
The default wait time is 20 seconds.

Example

<CoreExitDelay>60</CoreExitDelay>

See also

CoreGC

CoreGC
Specifies how often, in seconds, to check for and remove idle or unused cores. The default is 300 seconds.

Example

<CoreGC>300</CoreGC>

See also

CoreExitDelay

CoreTimeout
Specifies the timeout value, in seconds, for detecting unresponsive cores. The default timeout is 30 seconds. A value
of 0 disables the timeout check.

Example

<CoreTimeout>30</CoreTimeout>

See also

CoreGC

CPUMonitor
Specifies, in seconds, how often the server monitors CPU usage. The default interval is 1 second. The value cannot
be set to less than 1 second.

Example

<CPUMonitor>1</CPUMonitor>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

147

See also

RecBuffer, ThreadPoolGC, MsgPoolGC, ApplicationGC

Deny
Specifies administrator connections that should be ignored. The connections are specified as a comma-delimited list
of host names, domain names, and full or partial IP addresses, or the keyword all.

Example

<Deny>x.foo.com, foo.com, 10.60.1.133, 10.60</Deny>

or

<Deny>all</Deny>

See also

Allow, Order

Diagnostic
Container element.

The Enable element nested within the Diagnostic section enables the diagnostic log file.

Contained element

Enable

ECCP
Container element.

The elements nested within the ECCP container configure ECCP (Edge Server-Core Server Communication
Protocol). Flash Media Server edge processes and Flash Media Server core processes use ECCP to migrate socket
connections and proxy nonmigrated connections.

Contained elements

MinIOThreads, MaxIOThreads, SocketTableSize, SocketOverflowBuckets, CoreTimeout

Edge
Container element.

The elements nested within the Edge container configure the RTMP protocol for the FMSEdge.exe (fmsedge)
process.

Contained elements

MinIOThreads, MaxIOThreads, SocketTableSize, SocketOverflowBuckets

EdgeCore
Container element.

The elements nested within the EdgeCore container control the IPC (interprocess communication) message queue
used by edge and core processes to communicate with each other.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

148

Contained elements

HeapSize, MaxQueueSize

Enable
Server.xml uses six elements named Enable: in the Access, Diagnostic, Application,AuthEvent,
AuthMessage,and FileIO containers within the Logging container.

This element enables or disables the various, individual logs. A value of true enables the logging process; false
disables the logging process. The default value is true.

Example

<Access>
<enable>true</Enable>

</Access>

See also

Access, Diagnostic, Application, AuthEvent, AuthMessage, FileIO

FileCheckInterval
Specifies, in seconds, how often the server reloads the video segment in the cache when there is a file change. The
default value is 120 seconds. The minimum value is 1 second. There is no maximum; a very large number means the
server will not refresh what is in the cache even when there is a file change.

Example

<FileCheckInterval>120</FileCheckInterval>

See also

MaxSize (FLVCache), UpdateAccessTimeInterval, MaxKeyframeCacheSize

FileIO
Container element.

The Enable element nested within the FileIO container enables logging from the File plug-in.

Contained element

Enable

FLVCache
Container element.

Contains elements that control the size and features of the FLV cache.

Contained elements

FileCheckInterval, MaxSize (FLVCache), UpdateAccessTimeInterval, MaxKeyframeCacheSize

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

149

FLVCacheSize
Specifies the maximum size of the FLV cache in megabytes. The FLV cache size is specified as a percentage of the
total available RAM on the system. The default setting for cache size is 10 (10%). The maximum setting is 100
(100%), in which case virtual memory will also be used.

Use this setting to configure the cache for optimal memory use. If you are receiving “cache full” events in the core
log file or want to increase the chance that streams will find the information needed in the cache, increase the size
of the cache. To minimize the amount of memory used in the server process, decrease the size of the cache.

Example

<FLVCacheSize>10</FLVCacheSize>

See also

RecBuffer, CPUMonitor

FreeMemRatio
Located in the MessageCache, SmallMemPool, LargeMemPool, and SegmentsPool containers.

Specifies the maximum percentage of total memory that the total pool size may occupy. The range of this setting is
from 0 (0%) to 1 (100%). The default setting is 0.5 (50%).

Example

<FreeMemRatio>0.5</FreeMemRatio>

See also

MaxCacheUnits, MaxCacheSize, MaxUnitSize, FreeRatio, GlobalRatio, MaxAge, UpdateInterval

FreeRatio
Located in the MessageCache, SmallMemPool, LargeMemPool, and SegmentsPool containers.

Specifies the percentage of the message cache to be consumed by the free list on a per-thread basis. The range of this
setting is from 0 (0%) to 1 (100%). The default setting is 0.125 (12.5%).

When more free memory is available to a thread than the specified ratio, the freed memory returns to the global pool.

Example

<FreeRatio>0.125</FreeRatio>

See also

MaxCacheUnits, MaxCacheSize, MaxUnitSize, GlobalRatio, MaxAge, UpdateInterval, FreeMemRatio

GCInterval
Specifies in minutes how often to remove idle handles. The default is 60 minutes.

Example

<GCInterval>60</GCInterval>

See also

MaxSize (HandleCache), IdleTime, TrimSize

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

150

GID
Located in the Process (Server) and Process (AdminServer) containers.

Specifies the group ID of the process. This element is applicable to Flash Media Server running on Linux systems
only.

Example

<GID>${SERVER.PROCESS_GID}</GID>

See also

UID

GlobalQueue
Container element.

The elements nested within the GlobalQueue container control the IPC message queue used by all processes to
communicate with each other.

Contained elements

HeapSize, MaxQueueSize

GlobalRatio
Located in the MessageCache, SmallMemPool, LargeMemPool, and SegmentsPool containers.

Specifies the percentage of the message cache to be consumed by the free list on a global basis. When more free
memory is available to a thread than the specified ratio, the freed memory returns to the operating system.

The range of this setting is from 0 (0%) to 1 (100%). The default setting is 0.4 (40%).

Example

<GlobalRatio>0.4</GlobalRatio>

See also

MaxCacheUnits, MaxCacheSize, MaxUnitSize, FreeRatio, MaxAge, UpdateInterval, FreeMemRatio

HandleCache
Container element.

Contains elements that configure the size and features of the handle cache.

Contained elements

MaxSize (HandleCache), IdleTime, TrimSize, GCInterval

HeapSize
Located in the GlobalQueue, EdgeCore, and Services containers.

Specifies the maximum size, in kilobytes, of the shared memory heap used for an IPC (interprocess communication)
message queue. The default value for this element varies according to its container.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

151

Example

<EdgeCore>
<HeapSize>1024</HeapSize>

</EdgeCore>

See also

FreeMemRatio

HostPort
Specifies the IP address and port number that the Flash Media Administration Server binds to. The default is to bind
to any available IP on port 1111. Only one port number may be specified in this element.

The Administration Service is separate from the Flash Media Server. When administrators connect to the server
with the Administration Console, they are connecting to the Flash Media Administration Server, which in turn
connects to Flash Media Server.

Example

<HostPort>ip:port</HostPort>

See also

RTMP (AdminServer), SocketGC, Process (AdminServer), AdminElem

HTTP
Container element.

The elements nested within the HTTP container configure the HTTP connector, which is used by remote Flash Player
sites to access Flash Media Server.

The following reference table gives the default values for all thread configurations.

Contained elements

MinConnectionThreads, MaxConnectionThreads, MaxConnectionQueueSize, HandleCache

Container Default Value Description

EdgeCore 1024 If the maximum size of this element is not specified, the value is 100 KB.

GlobalQueue 2048

Services 2048

Default Value Description

0 Allocates the default number of threads.

>0 Allocates the exact number of threads specified.

>0 Associates the default value with the number (N) of processors.

-1 Allocates 1xN threads.

-2 Allocates 2xN threads.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

152

IdleTime
Specifies the amount of time to wait before releasing cached handles. If no HTTP requests have been made to the
host for the length of time specified, some cached handles are cleared. Default wait time is 10 minutes.

Example

<IdleTime>10</IdleTime

See also

MaxSize (HandleCache), TrimSize, GCInterval

IPCQueues
Container element.

The elements nested within the IPCQueues container configure the IPC queues. Flash Media Server uses IPC queues
to send messages from one core to another or from one process to another, such as master to core, or core to edge.

Unlike protocols, queues are used for short or one-time messages that may have more than one target.

Contained elements

GlobalQueue, EdgeCore, Services

LargeMemPool
Container element.

The elements nested within the LargeMemPool container configure the large memory pool, which caches large
chunks of memory within Flash Media Server to increase performance of large allocations.

Contained elements

MaxCacheUnits, MaxCacheSize, MaxUnitSize, FreeRatio, GlobalRatio, MaxAge, UpdateInterval, FreeMem-
Ratio

LicenseInfo
Specifies key information about server licensing, including how many connections are allowed.

Note: Serial numbers that are added manually (that is, added by editing those files directly) to either fms.ini or the
LicenseInfo tag of Server.xml file cannot be removed using the Administration Console. Only serial numbers that are
added using the Administration Console can be deleted using the Administration Console.

Example

<LicenseInfo>${SERVER.LICENSEINFO}</LicenseInfo>

See also

Mask, ActiveProfile

LicenseInfoEx
Contains license keys added using the Administration Console. For more information about license keys, see the
LicenseInfo element.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

153

See also

LicenseInfo

LocalHost
Specifies the Flash Media Server IP loopback address.

Flash Media Server must reference itself locally. The IP loopback address is usually the default localhost address.
With more than one network interface, localhost can map to an erroneous interface. The server uses the default
loopback address as the local loopback.

Example

<LocalHost>localhost</LocalHost>

See also

Logging, PublicIP, SWFVerification

Logging
Container element.

The elements nested within the Logging container perform the overall logging configuration. You set the configu-
ration properties of the individual log files in the Vhost.xml file.

Log files are written in English. Field names in the log file are in English. Some content within the log file, however,
may be in another language, depending on the filename and the operating system. For example, in the Access.log
file, the columns x-sname and x-suri-stem show the name of the stream. If the name of the recorded stream is in
a language other than English, the stream’s name is written in the log file in that language, even if the server is
running on an English-language operating system.

Contained elements

Time, Access, Diagnostic, Application, AuthEvent, AuthMessage, FileIO

Mask
A three-digit octal value used by the Linux umask (user permissions mask) command to set a file creation mask. The
user must enter the mask in a three-digit octal format.

The default setting for this element is 017 in octal.

This element is applicable to Flash Media Server running on Linux systems only. This element controls who has
read/write access to shared object and stream files in the server. All Flash Media Server object files, such as stream
files or shared object files, are created on the server side with permission 0666. This key is used by umask to set the
file creation mask. By default, the creation mask is set to 017 in octal. Therefore, all Flash Media Server object files
are created with permission 0666 & ~017 = 0660 = rw-rw----.

The owner and the users who belong to the same group as the owner get read/write permission to the files. If the
mask is set to 022, the file created is assigned permission 0666 & ~022 = 0644 = rw-r--r--.

Example

<Mask>017</Mask>

See also

Process (AdminServer), LicenseInfo, ActiveProfile

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

154

Master
Container element.

The elements nested within the Master container configure the resource limits for the master server.

Contained elements

CoreGC, CoreExitDelay

MaxAge
Located in the MessageCache, SmallMemPool, LargeMemPool, and SegmentsPool containers.

This element defines the maximum reuse count before the cache unit is freed. The default count is 1,000,000.

Example

<MaxAge>1000000</MaxAge>

See also

MaxCacheUnits, MaxCacheSize, MaxUnitSize, FreeRatio, GlobalRatio, UpdateInterval, FreeMemRatio

MaxCacheSize
Located in the MessageCache, SmallMemPool, LargeMemPool, and SegmentsPool containers.

This element defines the maximum size of the cache in megabytes. The default is 100 MB.

Example

<MaxCacheSize>100</MaxCacheSize>

See also

MaxCacheUnits, MaxUnitSize, FreeRatio, GlobalRatio, MaxAge, UpdateInterval, FreeMemRatio

MaxCacheUnits
Located in the MessageCache, SmallMemPool, LargeMemPool, and SegmentsPool containers.

This element defines the maximum number of free units in the cache. Keep in mind that the number of free units
may be less than maximum if the value of the MaxCacheSize limit is reached.

The default is 4096 units.

Example

<MaxCacheUnits>4096</MaxCacheUnits>

See also

MaxCacheSize, MaxUnitSize, FreeRatio, GlobalRatio, MaxAge, UpdateInterval, FreeMemRatio

MaxConnectionQueueSize
Located in the HTTP and RTMP (Connector) containers.

Specifies the maximum number of connection requests that can be pending. Connection requests are rejected if this
limit is exceeded.

The default number of pending requests is 1000. To use the default, specify -1.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

155

Example

<MaxConnectionQueueSize>-1</MaxConnectionQueueSize>

See also

MinConnectionThreads, MaxConnectionThreads, HandleCache

MaxConnectionRate
Located in the RTMP (Protocol) and Edge containers.

Specifies the maximum number of incoming connections per second that the server’s socket listener accepts. You
can set a fractional maximum connection rate, such as 12.5. A value of 0 or -1 disables the feature.

This is a global setting for all socket listeners. If the element is set to 10 connections per second, each listener has a
limit of 10 connections per second. If there are three listeners and the MaxConnectionRate is set to 10, the server
imposes a maximum total combined rate of 30 connections per second. The socket listeners are configured in the
Adaptor.xml configuration file using the HostPort element under the HostPortList container element.

Connections requested at a rate above the value specified in this element remain in the TCP/IP socket queue and are
silently discarded by the operating system whenever the queue becomes too long.

Example

<MaxConnectionRate>100</MaxConnectionRate>

MaxConnectionThreads
Located in the HTTP and RTMP (Connector) containers.

Specifies the maximum number of threads used to process connection requests. The default number is 5. To use the
default, specify 0.

The number of threads for HTTP requests is limited to 10 by default. If the server is taking a long time to process
connections, however, raise the value of MaxConnectionThreads to 20.

Example

<MaxConnectionThreads>20</MaxConnectionThreads>

See also

MinConnectionThreads, MaxConnectionQueueSize, HandleCache

MaxIdleTime
Specifies the maximum idle time allowed, in seconds, before a client is disconnected. If this element is 0 or less, the
default idle time is used. The default idle time is 600 seconds (10 minutes).

A low value may cause unneeded disconnections. When you configure this element, consider the type of applications
running on the server. For example, if you have an application with which users watch short video clips, a user might
leave the window to idle out.

Example

<MaxIdleTime>600</MaxIdleTime>

See also

CheckInterval

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

156

MaxIOThreads
Located in the ACCP, Admin, Core, ECCP, Edge, and RTMP (Connector) containers.

Specifies the maximum number of threads that can be created for I/O processing.

Use the following information to configure all I/O and connection threads processing:

• A value of 0 allocates the default number of threads (10).

• A value greater than 0 allocates the exact number of threads specified.

• A value less than 0 ties the number of connection threads to the number (N) of processors, as follows:

• -1 means 1 x N threads.

• -2 means 2 x N threads, and so on.

Flash Media Server can receive connections through various protocols. The default value for this element varies
according to which container protocol it is nested within.

Example

<RTMP>
<MaxIOThreads>32</MaxIOThreads>

</RTMP>

See also

MinIOThreads, NumCRThreads, MinConnectionThreads, MaxConnectionThreads

MaxKeyframeCacheSize
Specifies the maximum number of keyframes in the cache for each FLV file. The default value is 2000 keyframes.

When enhanced seeking is enabled, the server generates keyframes that are saved in the cache. (For more infor-
mation, see EnhancedSeek in the Application.xml file.) If you lower MaxKeyframeCacheSize, the cache uses less
memory. If an application uses many large FLV files, you may want to lower this number.

Example

<MaxKeyframeCacheSize>0</MaxKeyframeCacheSize>

See also

FileCheckInterval, MaxSize (FLVCache), UpdateAccessTimeInterval

Container Default Value Description

ACCP 10 Use 0 for the default value.

Admin 10 Use 0 for the default value.

Core 10 Use 0 for the default value.

ECCP 10 Use 0 for the default value.

Edge 10 Use 0 for the default value.

RTMP 32 Use -1 for the default value.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

157

MaxNumberOfMessages
Specifies the maximum number of messages that the buffer holds before the messages are committed to file. The
default value is 200 and the minimum value is 0.

Example

<MaxNumberOfMessages>200</MaxNumberOFMessages>

See also

MaxSize (RecBuffer), MaxTimestampSkew

MaxQueueSize
Located in the GlobalQueue, EdgeCore, Services containers.

Specifies the maximum number of pending IPC messages that can be in the queue. When messages are sent to a
process that is not running, the message can be put in a pending queue for the process. When the process starts again,
it picks up the message. <MaxQueueSize> can be used to limit the number of messages left in the pending queue so
that shared memory is saved if the process never starts. The value is specified in kilobytes. The default size is 100 KB.

Example

<MaxQueueSize>10</MaxQueueSize>

See also

HeapSize

MaxSize (FLVCache)
Specifies the maximum size of the FLV cache in megabytes. The default value is 500 MB. This value shares memory
with the running process and has a limit of 2 GB in Windows and 3 GB in Linux.

The size of the cache limits the number of unique streams the server can publish. To increase the probability that a
requested stream will be located in the FLV memory cache, increase the value of MaxSize. To decrease the amount
of memory the server process uses, decrease the value of MaxSize.

Example

<MaxSize>500</MaxSize>

See also

FileCheckInterval, UpdateAccessTimeInterval, MaxKeyframeCacheSize

MaxSize (HandleCache)
Specifies the maximum number of handles to cache. The minimum value is 0, which means that no handles are
cached. There is no maximum value; it can be the maximum number of handles that the operating system can
support. The default value is 100 handles.

Example

<MaxSize>100</MaxSize>

See also

IdleTime, TrimSize, GCInterval

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

158

MaxSize (RecBuffer)
Specifies the maximum size to which the buffer can grow before messages are committed to file. The default value is
200 and the minimum value is 0. The higher the value, the longer the data will be held in the buffer before written
to disk.

Example

<MaxSize>5120</MaxSize>

See also

MaxNumberOfMessages, MaxTimestampSkew

MaxTimestampSkew
Specifies the maximum gap in milliseconds between two adjacent messages when comparing the message times-
tamps with the real time. The server logs a warning when the timestamps between two adjacent messages are bigger
than the difference in real time plus the value set here for MaxTimestampSkew. This element is disabled by default.
To enable the element, set the value to a positive number.

Example

<MaxTimestampSkew>2</MaxTimestampSkew>

See also

MaxNumberOfMessages, MaxSize (RecBuffer)

MaxUnitSize
Located in the MessageCache, SmallMemPool, LargeMemPool, and SegmentsPool containers.

Specifies the maximum size, in kilobytes, of a memory chunk allowed in a memory pool. The default size is 16 KB.

Flash Media Server has several memory pools (distinct from the FLV cache) that hold memory in chunks. This
setting ensures that chunks larger than MaxUnitSize are released to system memory instead of being held in the
pool so that large memory chunks are available.

For example, if this tag is under MessageCache tag, the server doesn’t cache any messages greater than
MaxUnitSize.

Example

<MessageCache>
<MaxUnitSize>16</MaxUnitSize>

</MessageCache>

See also

MaxCacheUnits, MaxCacheSize, FreeRatio, GlobalRatio, MaxAge, UpdateInterval, FreeMemRatio

MessageCache
Container element.

The elements nested within the MessageCache container control how the message cache holds onto messages used
by the system running Flash Media Server and keeps them in memory for reuse instead of returning them and
requesting them from the operating system.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

159

Messages are the essential communication units of Flash Media Server. Recycling them improves the server’s perfor-
mance.

Contained elements

MaxCacheUnits, MaxCacheSize, MaxUnitSize, FreeRatio, GlobalRatio, MaxAge, UpdateInterval, FreeMem-
Ratio

MinConnectionThreads
Located in the HTTP and RTMP (Connector) containers.

Specifies the minimum number of threads in the pool for I/O operations. The default is 1 multiplied by the number
of processors. To use the default, specify the value 0.

Example

<MinConnectionThreads>0</MinConnectionThreads>

See also

MaxConnectionThreads

MinGoodVersion
Specifies the minimum accepted version of SWFVerification allowed by the server. The default value of 0 accepts
current and all future versions.

Example

<MinGoodVersion>0</MinGoodVersion>

See also

SWFFolder

MinIOThreads
This element is located in the ACCP, Admin, Core, ECCP, Edge, and RTMP (Connector)containers.

The element specifies the minimum number of threads that can be created for I/O operations.

Flash Media Server can receive connections through various protocols. The default value for this element varies
according to which container protocol it is nested within.

Example

<ECCP>

Container Default Value Description

ACCP 2X number of processors Use 0 for the default value.

Admin 2X number of processors Use 0 for the default value.

Core 2X number of processors Use 0 for the default value.

ECCP 2X number of processors Use 0 for the default value.

Edge 2X number of processors Use 0 for the default value.

RTMP 2X number of processors Use -1 for the default value.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

160

<MinIOThreads>0</MinIOThreads>
</ECCP>

See also

MaxIOThreads, NumCRThreads, MinConnectionThreads, MaxConnectionThreads

MsgPoolGC
Specifies how often the server checks for content in and removes content from the global message pool.

The default interval for checking and removing content is 60 seconds.

Example

<MsgPoolGC>60</MsgPoolGC>

See also

ThreadPoolGC, ApplicationGC

NetworkingIPv6
Enables or disables Internet Protocol version 6 (IPv6). This is an empty tag.

The operating system network stack should be configured to support IPv6, if desired. Flash Media Server automat-
ically detects operating system configuration; this element can force Flash Media Server to use IPv4 even if IPv6 is
available.

Example

<NetworkingIPv6 enable="false" />

NumCRThreads
Specifies the number of completion routine threads in Windows 32-bit systems for edge server I/O processing.

Example

<NumCRThreads>0</NumCRThreads>

See also

MinIOThreads, MaxIOThreads, MinConnectionThreads, MaxConnectionThreads

Order
Specifies the order in which to evaluate the Allow and Deny elements.

Example

To process the request if not in <Deny> or in <Allow>, set:

<Order>Deny,Allow</Order>

To process the request if in <Allow> and not in <Deny>, set:

<Order>Allow, Deny</Order>

See also

Allow, Deny

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

161

Process (AdminServer)
Container element.

The elements nested within the Process container configure UID and GID for the Administration Server. In UNIX,
all the Administration Server processes switch from root to the UID and GID specified in this section for security
reasons. If no UID and GID are specified, the server runs as root.

Contained elements

UID, GID

Process (Server)
Container element.

The elements nested within the Process container contain the ID elements for all server processes. These elements
are applicable to Flash Media Server running on Linux systems only. In UNIX, all the server processes switch from
root to the UID and GID specified in this section for security reasons. If no UID and GID are specified, the server
runs as root.

Contained elements

UID, GID

Protocol
Container element.

Flash Media Server receives connections through various protocols. The elements in this container configure those
protocols and how the connection requests are received.

To set the values of all I/O and connection threads processing, follow these guidelines:

• A value of 0 allocates the default number of threads (10).

• A value greater than 0 allocates the exact number of threads specified.

• A value less than 0 ties the number connection threads to the number (N) of processors:

• -1 means 1 x N threads

• -2 means 2 x N threads, etc.

Contained elements

ACCP, ECCP, RTMP (Protocol) containers

PublicIP
Specifies that if the system has more than two network ports, a public IP address should be created for the system.

See also

Logging, LocalHost, SWFVerification

RecBuffer
Container element.

Contains elements that configure the buffer for FLV recording.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

162

Contained elements

MaxNumberOfMessages, MaxSize (RecBuffer), MaxTimestampSkew

ResourceLimits
Container element.

The elements nested within the ResourceLimits container specify the maximum resource limits for the server,
including the HTTP and RTMP protocols.

Contained elements

FLVCache, RecBuffer, CPUMonitor, ThreadPoolGC, MsgPoolGC, ApplicationGC, FLVCacheSize, SocketGC,
SSLSessionCacheGC, Connector, Protocol, IPCQueues, MessageCache, SmallMemPool, LargeMemPool,
SegmentsPool, Master

Root
Container element.

The Root element is a container for all the other elements in the Server.xml file.

RTMP (AdminServer)
Container element.

This container holds elements that configure different versions of RTMP, which are applied while connecting to the
Administration Server. (RTMP is the protocol used for communication between Flash Player and Flash Media
Server.)

Contained element

RTMPE

RTMP (Connector)
Container element.

This container holds the elements that configure RTMP (Real-Time Messaging Protocol). RTMP is the protocol used
for communication between Flash Player and Flash Media Server.

The following reference table lists the default values for all thread configurations.

Contained elements

MinIOThreads, MaxIOThreads, NumCRThreads, MinConnectionThreads, MaxConnectionThreads, MaxConnec-
tionQueueSize

Default Value Description

0 Allocates the default number of threads (10).

>0 Allocates the exact number of threads specified.

<0 Associates the default value with the number (N) of processors.

-1 Allocates 1xN threads.

-2 Allocates 2xN threads.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

163

RTMP (Protocol)
Container element.

This container holds the elements that configure RTMP (Real-Time Messaging Protocol). RTMP is the protocol used
for communication between Flash Player and Flash Media Server.

Contained elements

Edge, Core, Admin

RTMPE
Specifies if Encrypted Real-Time Messaging Protocol (RTMPE) can be used to connect to the Administration Server.
(RTMPE also covers RTMPTE.) The default is set to true. Setting this element to false prohibits RTMPE and
RTMPTE from being used.

Example

<RTMPE enabled=”true”></RTMPE>

See also

AdminServer

Scope
This element determines whether to write a separate log file for each virtual host or to write one log file for the server.

The value for this element is server or vhost. The default is server, which enables logging for all processes on the
server.

Example

<Scope>server</Scope>

See also

Enable

SegmentsPool
Container element.

The elements in this section configure how the segments pool caches segments of video files within Flash Media
Server to increase performance of video streaming and keep frequently used video files in memory.

Contained elements

MaxCacheUnits, MaxCacheSize, MaxUnitSize, FreeRatio, GlobalRatio, MaxAge, UpdateInterval, FreeMem-
Ratio

Server
Container element.

The elements next within the Server element contains the elements that configure the server.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

164

Contained elements

NetworkingIPv6, SSL, Process (Server), Mask, LicenseInfo, ActiveProfile, AdminServer,
AutoCloseIdleClients, ResourceLimits, Logging, LocalHost, PublicIP, and SWFVerification

ServerDomain
Specifies the host name (with the domain) of the server computer.

You set this element in the referrer header element when a connection is established with a remote server using
NetConnection. Set this element to the server’s domain name so that it can pass the domain name to any application
servers to which it connects. For security purposes, some application servers require this information as a part of
incoming connection requests.

If this element is not set, the host name field is not supplied in the referrer header.

Example

<ServerDomain>mydomain.global.mycompany.com</ServerDomain>

See also

Server

Services
Container element.

The elements in this section control the IPC message queue used by the edge and core processes to communicate
with each other.

Contained elements

HeapSize, MaxQueueSize

SmallMemPool
Container element.

The elements in this section configure the small memory pool, which saves small chunks of memory within Flash
Media Server to increase performance of small allocations.

Contained elements

MaxCacheUnits, MaxCacheSize, MaxUnitSize, FreeRatio, GlobalRatio, MaxAge, UpdateInterval, FreeMem-
Ratio

SocketGC
Located in the AdminServer and ResourceLimits containers.

Specifies how often, in seconds, the server checks for and removes inactive sockets. The default value is 60 seconds.

Example

<SocketGC>60</SocketGC>

See also

RTMP (AdminServer), HostPort, Process (AdminServer)

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

165

SocketOverflowBuckets
Located in the Edge, Core, Admin, ECCP, and ACCP containers.

Specifies the number of overflow buckets if all slots in the socket table are in use.

The default number of buckets is 16; specify -1 to use the default number of buckets.

Example

<Admin>
<SocketOverflowBuckets>-1</SocketOverflowBuckets>

</Admin>

See also

MinIOThreads, MaxIOThreads, SocketTableSize

SocketRcvBuff
The size of the client socket receive buffer, in bytes. The default value is 0, which tells the server to use the operating
system default values.

You should explicitly set this value only if you have a very high bandwidth connection that requires a large socket
buffer. Setting a high value significantly increases the amount of memory used by each client. It is recommended that
you do not explicitly set this value.

See also

SocketSndBuf

SocketSndBuf
The size of the client socket send buffer, in bytes. The default value is 0, which tells the server to use the operating
system default values.

You should explicitly set this value only if you have a very high bandwidth connection that requires a large socket
buffer. Setting a high value significantly increases the amount of memory used by each client. It is recommended that
you do not explicitly set this value.

See also

SocketRcvBuff

SocketTableSize
Located in the Edge, Core, Admin, ECCP, and ACCP containers.

Specifies the size of the direct-access socket table for quick lookup. The default size is 200. Use -1 for the default value.

Example

<Admin>
<SocketTableSize>-1</SocketTableSize>

</Admin>

See also

MinIOThreads, MaxIOThreads, SocketOverflowBuckets

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

166

SSL
Container element.

The SSL elements in Server.xml configure the server to act as an SSL-enabled client by securing the outgoing connec-
tions.

Contained elements

SSLRandomSeed, SSLSessionCacheGC, SSLClientCtx

SSLCACertificateFile
Specifies the name of a file that contains one or more CA (Certificate Authority) digital certificates in PEM (Privacy
Enhanced Mail) encryption format.

See also

SSLVerifyCertificate, SSLCACertificatePath, SSLVerifyDepth, SSLCipherSuite

SSLCACertificatePath
Specifies the name of a directory containing CA certificates. Each file in the directory must contain only a single CA
certificate, and the files must be named by the subject name’s hash, and “0” as an extension.

For Win32 only: If this element is empty, attempts are made to find CA certificates in the certs directory located at
the same level as the conf directory. The Windows certificate store can be imported into this directory by running
FMSMaster - console - initialize from the command line.

See also

SSLVerifyCertificate, SSLCACertificateFile, SSLVerifyDepth, SSLCipherSuite

SSLCipherSuite
Specifies the suite of encryption ciphers that the server uses to secure communications.

This element is a colon-delimited list of encryption resources, such as a key-exchange algorithm, authentication
method, encryption method, digest type, or one of a selected number of aliases for common groupings. Each item
in the cipher list specifies the inclusion or exclusion of an algorithm or cipher. In addition, there are special keywords
and prefixes. For example, the keyword ALL specifies all ciphers, and the prefix ! removes the cipher from the list.

The default cipher list instructs the server to accept all ciphers, but block those using anonymous Diffie-Hellman
authentication, block low-strength ciphers, block export ciphers, block MD5 hashing, and sort ciphers by strength
from highest to lowest level of encryption.

Important: Contact Adobe Support before changing the default settings.

The cipher list consists of one or more cipher strings separated by colons. Commas or spaces are also acceptable
separators, but colons are normally used.

The string of ciphers can take several different forms.

• It can consist of a single cipher suite, such as RC4-SHA.

• It can represent a list of cipher suites containing a certain algorithm, or cipher suites of a certain type.

For example, SHA1 represents all cipher suites using the digest algorithm SHA1, and SSLv3 represents all SSL v3
algorithms.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

167

• Lists of cipher suites can be combined in a single cipher string using the + character as a logical and operation.

For example, SHA1+DES represents all cipher suites containing the SHA1 and the DES algorithms.

• Each cipher string can be optionally preceded by the characters !, -, or +.

• If ! is used, then the ciphers are permanently deleted from the list. The ciphers deleted can never reappear in the
list even if they are explicitly stated.

• If - is used, then the ciphers are deleted from the list, but some or all of the ciphers can be added again later.

• If + is used, then the ciphers are moved to the end of the list. This option doesn't add any new ciphers—it just
moves matching existing ones.

• If none of these characters is present, then the string is just interpreted as a list of ciphers to be appended to the
current preference list.

• If the list includes any ciphers already present, the server does not evaluate them.

• The cipher string @STRENGTH sorts the current cipher list in order of the length of the encryption algorithm key.

The components can be combined with the appropriate prefixes to create a list of ciphers, including only those
ciphers the server is prepared to accept, in the order of preference.

Example

<SSLCipherSuite>ALL:!ADH:!EDH</SSLCipherSuite>

This cipher string instructs the server to accept all ciphers except those using anonymous or ephemeral
Diffie-Hellman key exchange.

<SSLCipherSuite>RSA:!NULL!EXP</SSLCipherSuite>
<SSLCipherSuite>RSA:LOW:MEDIUM:HIGH</SSLCipherSuite>

These cipher strings instruct the server to accept only RSA key exchange and refuse export or null encryption. The
server evaluates both strings as equivalent.

<SSLCipherSuite>ALL:+HIGH:+MEDIUM:+LOW:+EXP:+NULL</SSLCipherSuite>

This cipher list instructs the server to accept all ciphers but place them in order of decreasing strength. This
sequencing allows clients to negotiate for the strongest cipher that both they and the server can accept.

<SSLCipherSuite>ALL:+HIGH:!LOW:!EXP:!NULL</SSLCipherSuite>

This string instructs the server to accept only high- and medium-strength encryption, with the high being preferred,
and reject export-strength versions.

<SSLCipherSuite>ALL:+SSLv2</SSLCipherSuite>

This string instructs the server to accept all ciphers, but order them so that SSLv2 ciphers come after SSLv3 ciphers.

Here is the complete list of components that the server can evaluate.

Key exchange algorithm Description

kRSA Key exchange

kDHr Diffie-Hellman key exchange with RSA key

kDHd Diffie-Hellman key exchange with DSA key

RSA Ephemeral Diffie-Hellman key exchange

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

168

See also

SSLVerifyCertificate, SSLCACertificatePath, SSLCACertificateFile, SSLVerifyDepth,

DH RSA key exchange

EDH Ephemeral Diffie-Hellman key exchange

ADH Anonymous Diffie-Hellman key exchange

Authentication methods Description

aNULL No authentication

aRSA RSA authentication

aDSS DSS authentication

aDH Diffie-Hellman authentication

Encryption methods Description

eNULL No encoding

DES DES encoding

3DES Triple-DES encoding

RC4 RC4 encoding

RC2 RC2 encoding

IDEA IDEA encoding

NULL No encryption

EXP All export ciphers (40-bit encryption)

LOW Low-strength ciphers (no export, DES)

MEDIUM 128-bit encryption

HIGH Triple-DES encoding

Digest types Description

MD5 MD5 hash function

SHA1 SHA1 hash function

SHA SHA hash function

Additional aliases Description

All All ciphers

SSLv2 All SSL version 2.0 ciphers

SSLv3 All SSL version 3.0 ciphers

DSS All ciphers using DSS authentication

Key exchange algorithm Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

169

SSLClientCtx
Container element.

Configures the server to act as an SSL-enabled client by securing the outgoing connections.

Contained elements

SSLVerifyCertificate, SSLCACertificatePath, SSLCACertificateFile, SSLVerifyDepth, SSLCipher-
Suite

SSLRandomSeed
Specifies how often to flush expired sessions from the server-side session cache.

Example

<SSLRandomSeed>ALL:!ADH:!EDH</SSLRandomSeed>

See also

SSLSessionCacheGC, SSLClientCtx

SSLSessionCacheGC
Specifies how often to check for and remove expired sessions from the server-side session cache.

Example

<SSLSessionCacheGC>5</SSLSessionCacheGC>

See also

SSLRandomSeed, SSLClientCtx

SSLVerifyCertificate
Specifies if the certificate returned by the server should be verified. Certificate verification is enabled by default. To
disable certificate verification, specify false.

Note: Disabling certificate verification can result in security problems.

Example

<SSLVerifyCertificate>true</SSLVerifyCertificate>

See also

SSLCACertificatePath, SSLCACertificateFile, SSLVerifyDepth, SSLCipherSuite

SSLVerifyDepth
Specifies the maximum depth of the certificate chain to accept. If a self-signed root certificate cannot be found within
this depth, certificate verification fails. The default value is 9.

Example

<SSLVerifyDepth>9</SSLVerifyDepth>

See also

SSLVerifyCertificate, SSLCACertificatePath, SSLCACertificateFile, SSLCipherSuite

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

170

SWFFolder
Specifies a folder containing SWF files that are verified to connect to any application on this server. Use a semicolon
to separate multiple directories.

Example

The following example allows SWF files from either the C or the D directory to be authenticated:

<SWFFolder>C:\SWFs;D:\SWFs</SWFFolder>

See also

MinGoodVersion

SWFVerification
Container element.

Contains elements that configure how SWF files connecting to an application are verified.

Contained elements

SWFFolder, MinGoodVersion

TerminatingCharacters
Specifies the final characters of each log entry in log files. The default is CRLF (carriage return and line feed).

Example

<TerminatingCharacters>CRLF</TerminatingCharacters>

See also

Time

ThreadPoolGC
Specifies in minutes how often Flash Media Server checks for and removes unused I/O threads.

The default time is 20 minutes. You cannot specify less than 20 minutes.

Example

<ThreadPoolGC>25</ThreadPoolGC>

See also

MsgPoolGC, ApplicationGC SocketGC, SSLSessionCacheGC

Time
Specifies the time field in a log file.

The time field in a log file can be specified either as UMT (GMT) or local time. The default setting is local.

Example

<Time>local</Time>

See also

TerminatingCharacters, Access, TrimSize

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

171

TrimSize
Specifies a percentage of cached handles to remove. Can be specified as a number between 0 and 1, representing 0%
to 100%. Default is 0.2 (20%).

Example

<TrimSize>0.2</TrimSize>

See also

MaxSize (HandleCache), IdleTime, GCInterval

TTL
Specifies in minutes how long each SWF file remains in the cache. The default value is 1440 minutes (24 hours).

See also

Cache, UpdateInterval (Cache)

UID
Located in the Process (Server) and Process (AdminServer) containers.

This element contains the server process user ID.

If no UID or group ID (GID) is specified, the server or Administration Server runs as root. This element is applicable
to Flash Media Server running on Linux systems only.

Example

<UID>${SERVER.PROCESS_UID}</UID>

See also

GID

UpdateAccessTimeInterval
Specifies how often, in seconds, to modify the access time of the video cache file in the edge server when the video
is actively used by the server. The default value is 1200 seconds (20 minutes). Set the value to -1 to disable the server
from changing the access.

Example

<UpdateAccessTimeInterval>1200</UpdateAccessTimeInterval>

See also

FileCheckInterval, MaxSize (FLVCache), MaxKeyframeCacheSize

UpdateInterval
Located in the MessageCache, SmallMemPool, LargeMemPool, and SegmentsPool containers.

Specifies how often, per reused messages, thread statistics are collected. The default count is every 1024 messages.

Example

<UpdateInterval>1024</UpdateInterval>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

172

See also

MaxCacheUnits, MaxCacheSize, MaxUnitSize, FreeRatio, GlobalRatio, MaxAge, FreeMemRatio

UpdateInterval (Cache)
Specifies the maximum time in minutes to wait for the server to scan the SWF folders for updates when there is a
miss in the cache. The default value is 5 minutes.

See also

Cache, TTL

Users.xml file
Users.xml is located at the root level of the conf directory. It contains the elements and information used to identify
Flash Media Server administrators and their access permissions and to configure Server Management API calls to
Flash Media Administration Server. You edit the Users.xml file to add or remove Flash Media Server administrators,
or change their administrative permissions.

To see the element structure and default values in Users.xml, see the Users.xml file installed with Flash Media Server
in the RootInstall/conf/ directory.

Summary of elements

Users.xml element Description

AdminServer Container element; contains elements to configure access to the Flash Media Administration Server.

Allow (HTTPCommands) Lists the Flash Media Administration Server commands that the administrator can access using
HTTP.

Allow (User) Lists the specific hosts from which an administrator can connect to the Flash Media Administration
Server.

Deny (HTTPCommands) Lists the Flash Media Administration Server commands denied access via HTTP.

Deny (User) Lists the specific hosts from which the administrator cannot connect to the Flash Media Administra-
tion Server.

Enable Enables or disables using HTTP requests to execute administration commands.

HTTPCommands Container element; contains settings for those administration commands accessed through the
HTTP protocol.

Order (HTTPCommands) Specifies the order of processing for lists of denied and allowed HTTP commands for accessing the
Flash Media Administration Server.

Order (User) Specifies the order in which to evaluate the Allow and Deny elements.

Password Specifies the password for virtual host administrators.

Root Root element; this element is a container for all the other elements.

User Identifies an administrator of the server.

UserList Container element; contains information about server administrators.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

173

AdminServer
Container element.

The HttpCommands container nested within the AdminServer container configures the access level to the Flash
Media Administration Server.

The Administration Service is separate from Flash Media Server. When administrators use the Administration
Console to connect to Flash Media Server, they are connecting to the Flash Media Administration Server, which in
turn connects to the server.

Contained element

HTTPCommands container

Allow (HTTPCommands)
Lists the Flash Media Administration Server commands that the administrator can access using HTTP. You can
authorize an administrator to use multiple HTTP commands for access by creating a comma-separated list of the
commands. The value All authorizes the administrator to use all HTTP commands. However, Adobe does not
recommend this usage as it creates a security risk.

Example

<Allow>foo.yourcompany.com,adobe.com,10.60.1.133,10.60</Allow>

See also

Enable, Deny (HTTPCommands), and Order (HTTPCommands)

Allow (User)
Lists the specific hosts from which an administrator can connect to the Flash Media Administration Server. The
administrator can only connect to the server from those hosts specified in this Allow element. You authorize the
administrator’s access by creating a comma-delimited list of the accessible host names or domain names, and/or full
or partial IP addresses. Whenever possible, use the IP addresses in the Allow element to improve the server’s perfor-
mance when processing connection requests.

Example

<Allow>foo.yourcompany.com, adobe.com, 10.60.1.133, 10.60</Allow>

See also

Password, Deny (User), Order (User)

Deny (HTTPCommands)
Flash Media Server uses two elements named Deny: the Deny element in the User container, and the Deny element
in the HTTPCommands container.

This Deny element lists the Flash Media Administration Server commands that an administrator cannot use through
HTTP.

You can deny an administrator the use of multiple HTTP commands to access the Administration Service by
creating a comma-separated list of those HTTP commands.

Example

<Deny>Deny,Allow</Deny>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

174

See also

Enable, Allow (HTTPCommands), Order (HTTPCommands)

Deny (User)
Flash Media Server uses two elements named Deny: the Deny element in the User container, and the Deny element
in the HTTPCommands container.

This element lists those hosts from which the administrator is not authorized to connect to Flash Media Adminis-
tration Server. You restrict the administrator’s access by creating a comma-delimited list of those host names or
domain names and/or (full or partial) IP addresses.

Example

<Deny>foo.yourcompany.com,adobe.com,10.60.1.133,10.60</Deny>

This example lists the computers sending connection requests that Flash Media Administration Server will not
accept.

See also

Password, Allow (User), Order (User)

Enable
This element enables or disables the use of HTTP requests to execute administrative commands.

Setting this element enables HTTP requests to execute administrative commands. To disable administrative access
through the use of HTTP requests, do not set this element.

Example

<Enable>true</Enable>

See also

Allow (HTTPCommands), Deny (HTTPCommands), Order (HTTPCommands)

HTTPCommands
Container element.

This section contains the settings for those Flash Media Administration Server commands that can be accessed
through HTTP. The default value is ping. Specify each Administration API that may be called over HTTP in a
comma-delimited list. When finished, restart the server.

Contained elements

Enable, Allow (HTTPCommands), Deny (HTTPCommands), Order (HTTPCommands)

Order (HTTPCommands)
Flash Media Server uses two Order elements: one in the HTTPCommands container and another in the User container.

Specifies the order in which to evaluate the Deny and Allow commands.

Example

The sequence Deny, Allow means the HTTP command is allowed if the command is in the Allow list of commands
or not in the Deny list.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

175

<Order>Deny,Allow</Order>

The sequence Allow, Deny means the HTTP command is allowed if it is in the Allow list of commands and not in
the Deny list.

<Order>Allow,Deny</Order>

See also

Enable, Allow (HTTPCommands), Deny (HTTPCommands)

Order (User)
Flash Media Server uses two Order elements: one in the HTTPCommands container, and the other in the User
container.

Specifies the sequence in which Flash Media Server evaluates the Allow and Deny elements for an administrator.

Example

The default sequence Allow, Deny means that administrative access is allowed unless the user is specified in the
Allow list of commands and not in the Deny list:

<Order>Allow,Deny</Order>

The alternative sequence Deny, Allow means that administrative access is allowed unless the user is specified in the
Deny list of commands and not specified in the Allow list.

<Order>Deny,Allow</Order>

See also

Password, Allow (User), Deny (User)

Password
Specifies the password for vhost administrators.

Passwords cannot be empty strings (""). Passwords are usually encrypted. In the following example, the encrypt
attribute instructs the server to encrypt the contents of the password. When the encrypt attribute is set to true, the
password you see in the file is the encrypted password, and it is interpreted as an encoded string.

Example

<Password encryt="true"></password>

See also

Allow (User), Deny (User), Order (User)

Root
Container element.

The Root element is a container for all the other elements. If the Users.xml file resides under a virtual host (to define
administrators for that virtual host), then this tag must have its name attribute set to the name of the virtual host
under which it resides.

Example

<Root name="_defaultVHost_">

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

176

User
This element identifies an administrator of the server.

You can identify multiple administrators of a virtual host by creating a profile for each administrator.

Example

Use the name attribute to identify the login name of a Flash Media Server administrator:

<User name="jsmith"></User>

See also

UserList

UserList
Container element.

The UserList element defines and holds information about server administrators.

Contained elements

User, Password, Allow (User), Deny (User), Order (User)

Vhost.xml file
The Vhost.xml configuration file defines an individual virtual host. Each virtual host directory on the server
contains its own Vhost.xml file.

The Vhost.xml file contains elements that define the settings for the virtual host. These settings include aliases for
the virtual host, the location of the virtual host’s application directory, limits on the resources the virtual host can
use, and other parameters.

Each virtual host must have its own directory inside the adaptor directory. The name of the directory must be the
actual name of the virtual host, such as streaming.adobe.com. Each defined virtual host must be mapped to a DNS
(domain name server) entry or another name resolution, such as a WINS address or a hosts file, that specifies an IP
address on the server computer.

Each adaptor must contain a _defaultVHost_ directory in addition to the custom virtual hosts that you define. If a
client application tries to connect to a virtual host that does not exist, the server attempts to connect it to
defaultVHost. If you are using a secure port for the adaptor that contains the virtual host, you can only define one
virtual host for the adaptor, in addition to _defaultVHost_.

To see the element structure and default values in Vhost.xml, see the Vhost.xml file installed with Flash Media Server
in the RootInstall/conf/_defaultRoot_/_defaultVhost_ directory.

Summary of elements

Vhost.xml element Description

AggregateMessages Determines if aggregate messages are delivered from the edge cache when the virtual
host is configured as edge.

Alias Specifies the assumed name(s) of the virtual host.

AliasList Container element; contains the list of Alias elements.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

177

Allow Specifies the domains that can connect to this virtual host.

AllowOverride Specifies if overriding edge autodiscovery is allowed.

Anonymous Determines whether or not this virtual host runs as an anonymous proxy.

AppInstanceGC Specifies how often to check for and remove unused application instances.

AppsDir Specifies the Applications directory for this virtual host.

AutoCloseIdleClients Specifies whether or not to automatically close idle clients.

CacheDir Specifies the physical location where streams are cached on server.

DNSSuffix Specifies the primary DNS (Domain Name Server) for this virtual host.

EdgeAutoDiscovery Container element; contains elements that configure edge autodiscovery.

Enabled Specifies if edge autodiscovery is enabled.

LocalAddress Specifies a local IP Address for an edge’s outgoing connection.

MaxAggMsgSize Specifies the size of aggregate messages returned from the edge cache.

MaxAppInstances Specifies the maximum number of application instances that can be loaded onto the
virtual host.

MaxConnections Specifies the maximum number of clients that can connect to this virtual host.

MaxEdgeConnections Specifies the maximum number of connections that can connect to this virtual host
remotely.

MaxIdleTime Specifies the maximum idle time allowed, in seconds, before a client is disconnected.

MaxSharedObjects Specifies the maximum number of shared objects that can be created.

MaxStreams Specifies the maximum number of streams that can be created.

Mode Configures this virtual host to run applications locally or remotely.

Proxy Container element; the elements in this section specify the settings for the virtual host to
act as an edge server and forward connection requests from applications to another Flash
Media Server, and also behave locally as a remote server.

ResourceLimits Container element; the elements in this section specify the maximum resource limits for
this virtual host.

RouteEntry Maps the proxy’s host:port pair to a different host:port pair.

RouteTable Container element; the elements in this section specify the proxy’s routing information.

SSL Container element; the elements in this section configure this virtual host for secure
communications.

Streams Specifies the virtual directory for recorded streams.

VirtualDirectory Container element; configures the directory mappings for resources such as recorded
streams.

VirtualHost Root element; contains all other elements for the Vhost.xml file.

VirtualKeys Sets the virtual key mappings for connecting players.

WaitTime Specifies length to wait for edge autodiscovery.

Vhost.xml element Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

178

AggregateMessages
Determines if aggregate messages are delivered from the edge cache when the virtual host is configured as an edge
server. Default is false.

If the edge server receives aggregate messages from the origin when this setting is disabled, the messages will be
broken up before being cached.

Example

<AggregateMessages enabled="true"
<MaxAggMsgSize>65536</MaxAggMsgSize>>

</AggregateMessages>

See also

EdgeAutoDiscovery, RouteEntry

Alias
The Alias element specifies the assumed name(s) of the virtual host.

An alias is an alternative short name to use when connecting to the virtual host. The Alias element lets you specify
additional names to connect to this virtual host. Use the Alias element to shorten long host names, or if you want
to be able to connect to this virtual host with different names.

Example

<Alias name="abc">abc.adobe.com</Alias>

If the name of this virtual host is “abc.adobe.com”, but you wish to connect by simply specifying “abc”, then specify
the alias abc. Keep in mind that abc must still map to the same IP address as “abc.adobe.com”.

If more than one virtual host on the same adaptor has been defined with the same alias, then the first match that is
found is taken. You can avoid unexpected behavior by specifying a unique alias for each virtual host.

See also

AliasList

AliasList
Container element.

The elements nested in this section list the alias(es) for this virtual host. You can specify an unlimited number of
aliases by adding additional Alias elements. Each Alias must map to the IP address of the virtual host.

Contained element

AggregateMessages

Allow
This element is a comma-delimited list of domains that are allowed to connect to this virtual host. The default value
is all. If the Allow element is left empty, the only connections allowed are those coming from the same domain.

Examples

<Allow>adobe.com,yourcompany.com</Allow>

This example allows only connections from the adobe.com and yourcompany.com domains.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

179

<Allow>localhost</Allow>

This example allows localhost connections only.

<Allow>all</Allow>

This example allows connections from all domains. Adobe does not recommend the use of all; it may create a
security risk.

See also

Anonymous

AllowOverride
Specifies if overriding edge autodiscovery is allowed by specifying the rtmpd protocol. If enabled, edge autodiscovery
is performed by default.

Example

<AllowOverride>true</AllowOverride>

See also

Enabled, WaitTime

Anonymous
Configures the virtual host as an anonymous proxy (also called an implicit or transparent proxy) or as an explicit
proxy. The default value is false. Setting this element to true creates an implicit proxy to intercept the
incoming URIs.

Both anonymous and explicit proxies intercept and aggregate the clients’ requests to connect to the origin server.
Here are some key differences between anonymous and explicit proxies:

• The identity (IP address and port number) of an anonymous server is hidden from the client.

• The anonymous proxy does not change or modify the routing information in the incoming URI before
connecting the client(s) to the origin server.

• The URI for an explicit proxy specifies the edge server(s) that will intercept connection requests to the origin
server.

You can create a chain of proxies by specifying them in the URI.

• Any anonymous proxy in the chain passes on, without modification, the routing information in the URI to the
next edge server in the chain.

• The routing information in the URI for a chain of explicit proxies specifies the edge servers that are chained
together to intercept connection requests to the origin server.

• The routing information in the URI for a chain of explicit proxies specifically identifies the sequence of edge
servers in the chain.

• The URI for a chain of explicit proxies directs all clients’ connection requests through a specific sequence of edge
servers before making the connection to the origin server.

• The explicit proxy modifies the routing information in the URI by stripping off its token or identifier in the URI
before passing the URI on to the next server in the chain.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

180

Example

<Anonymous>falsetrue</Anonymous>

See also

Mode, CacheDir, LocalAddress, RouteTable, EdgeAutoDiscovery, AggregateMessages

AppInstanceGC
Specifies how often to check for and remove unused resources for application instances, such as Shared Objects,
Streams, and Script engines.

The default interval is 1 minute.

Example

<AppInstanceGC>1</AppInstanceGC>

See also

MaxConnections, MaxEdgeConnections, MaxAppInstances, MaxStreams, MaxSharedObjects

AppsDir
Specifies the Applications directory for this virtual host.

The Applications directory is the base directory where all applications for this virtual host are defined. You define an
application by creating a directory with the application name.

• In Windows, the default AppsDir location is C:\Program Files\Adobe\Flash Media Server 3\applications.

• In Linux, the default location is /opt/adobe/fms/applications.

Note: If you use this tag to map to a network drive, see Mapping directories to network drives for additional information.

Example 1

<AppsDir>C:\MyApps;D:\NewApps</AppsDir>

You can also specify multiple applications directories by separating locations with a semicolon (;). You can specify
two locations, each of which contains application subdirectories. If you change the default location of the AppsDir
element, be sure to include a directory named admin in each directory. This ensures that the Administration Console
(fms_adminConsole.swf) will be able to connect to the virtual host.

If no location is specified for this element, the applications directory is assumed to be located in the vhost directory.

Example 2

The following example shows a mapping to a network drive:

<AppsDir>\\myNetworkDrive\share\fmsapps</AppsDir>

See also

AliasList, ResourceLimits, VirtualKeys

AutoCloseIdleClients
Container element.

Determines whether or not to close idle clients automatically.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

181

Set the enable attribute to true to close idle clients. If the enable attribute is omitted or set to false, the feature is
disabled. The default value is false.

A client is active when it is sending or receiving data. Use <AutoCloseIdleClients> to specify how often the server
should check for idle clients. When a client has been idle longer than the maximum idle time (60 seconds by default),
the server sends a status message to the NetConnection object (the client). The server closes the client connection
to the server and writes a message to the access log. The server also writes a message such as “Client x has been idle
for y seconds” in the core and event logs.

To configure the closing of idle connections, you must enable the feature in the Server.xml file. Once you enable the
feature in the Server.xml file, you can disable the feature for individual virtual hosts in the Vhost.xml files or for
individual applications in Application.xml. The values defined in the Vhost.xml configuration file apply to all clients
connected to the Vhost, unless values are defined in the Application.xml file. The Application.xml values override
the Vhost.xml values. (Subsequently, the values defined in the Server.xml configuration file apply to all clients
connected to the server, unless the values are defined in the Vhost.xml file. The Vhost.xml values override the
Server.xml values.

Example

<AutoCloseIdleClients enable="false">
<MaxIdleTime>600</MaxIdleTime>

</AutoCloseIdleClients>

See also

AppsDir, MaxIdleTime

CacheDir
This element enables or disables writing recorded streams to disk. Set this element on an edge server to control the
caching behavior.

The contents of the cache are volatile. This element controls whether the cached streams are written to disk, in
addition to being cached in memory.

The edge server caches content locally to aid performance, especially for vod applications. Caching static content can
reduce the overall load placed on the origin server.

The default location is the cache folder in the server installation directory. The default value of the enabled attribute
is false.

Example

To save the contents of the cache, set the enabled attribute to true and specify a directory on the disk where the
files will be written.

<CacheDir enabled="true">c:\mycache</CacheDir>

See also

Mode, Anonymous, LocalAddress, RouteTable

DNSSuffix
Specifies the primary DNS suffix for this virtual host.

If a reverse DNS lookup fails to return the domain as part of the host name, then this element is used as the domain
suffix.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

182

See also

AliasList, AppsDir, ResourceLimits, VirtualKeys, VirtualDirectory

EdgeAutoDiscovery
Container element.

Contains elements that configure edge autodiscovery. An edge server may connect to another server that is part of
a cluster. In this case, the edge server tries to determine which server in the cluster it should connect to (may or may
not be the server specified in the URL).

Example

<EdgeAutoDiscovery>
<Enabled>false</Enabled>
<AllowOverride>true</AllowOverride>
>WaitTime>1000</WaitTime>

</EdgeAutoDiscovery>

See also

Enabled, AllowOverride, WaitTime

Enabled
Specifies if edge autodiscovery is enabled. If Enabled is set to true, the edge server tries to determine to which server
in a cluster it should connect. Default is false.

Example

<Enabled>false</Enabled>

See also

AllowOverride, WaitTime

LocalAddress
This element binds an outgoing edge connection to a specific local IP address.

The LocalAddress element lets you allocate incoming and outgoing connections to different network interfaces.
This strategy is useful when configuring an edge to either transparently pass on or intercept requests and responses.

If the LocalAddress element is not specified, then outgoing connections bind to the value of the INADDR_ANY
Windows system variable.

See also

Proxy

MaxAggMsgSize
Specifies the size in bytes of aggregate messages returned from the edge cache. (Aggregate messages must be
enabled.) The default size is 65,536.

This setting only applies to messages retrieved from the disk cache. Aggregate messages received directly from the
origin server are returned as is and their size is determined by the origin server settings for aggregate message size.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

183

Example

<MaxAggMsgSize>66536</MaxAggMsgSize>

See also

AggregateMessages

MaxAppInstances
Specifies the maximum number of application instances that can be loaded into this virtual host.

A chat application, for example, might require more than one instance, because each chat room represents a separate
instance of the application on the server. The default number is 15,000 application instances.

A Flash SWF file defines which application instance it is connecting to by the parameters it includes with its
ActionScript connect call.

Example

<MaxAppInstances>15000</MaxAppInstances>

See also

MaxConnections, MaxEdgeConnections, MaxStreams, MaxSharedObjects, AppInstanceGC

MaxConnections
Specifies the maximum number of clients that can connect to this virtual host.

The maximum number of allowed connections is encoded in the license file. Connections are denied if the specified
limit is exceeded. The default number is -1, which represents an unlimited number of connections.

Example

<MaxConnections>-1</MaxConnections>

See also

MaxAppInstances, MaxEdgeConnections, MaxStreams, MaxSharedObjects, AppInstanceGC

MaxEdgeConnections
Specifies the maximum number of connections that can remotely connect to this virtual host. This number is
enforced by the license key.

Example

<MaxEdgeConnections>1</MaxEdgeConnections>

See also

MaxConnections, MaxAppInstances, MaxStreams, MaxSharedObjects, AppInstanceGC

MaxIdleTime
Specifies the maximum idle time allowed, in seconds, before a client is disconnected.

The default idle time is 600 seconds (10 minutes). A different value can be set for each virtual host. If no value is set
for this element in the Vhost.xml file, the server uses the value in the Server.xml file. The value for the MaxIdleTime
element in the Vhost.xml file overrides the value of the MaxIdleTime element in the Server.xml file.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

184

Example

<MaxIdleTime>600</MaxIdleTime>

See also

AutoCloseIdleClients

MaxSharedObjects
Specifies the maximum number of shared objects that can be created. The default number of shared objects is 50,000.

Example

<MaxSharedObjects>50000</MaxSharedObjects>

See also

MaxConnections, MaxEdgeConnections, MaxAppInstances, MaxStreams, AppInstanceGC

MaxStreams
Specifies the maximum number of streams that can be created. The default number of streams is 250,000.

Example

<MaxStreams>250000</MaxStreams>

See also

MaxConnections, MaxAppInstances, MaxSharedObjects, AppInstanceGC

Mode
The Mode element configures whether Flash Media Server runs locally as an origin server or remotely as an edge
server.

The Mode element can be set to local or remote. The default setting is local.

• When the Mode element is set to local, Flash Media Server runs its applications locally and is called an origin
server.

• When the Mode element is set to remote, the server behaves as an edge server that connects to the applications
running on an origin server.

• If the Mode element is undefined, the virtual host is evaluated as an alias for the default virtual host and assumes
its configuration.

Example

<Mode>local</Mode>

See also

Anonymous, CacheDir, LocalAddress, RouteTable, EdgeAutoDiscovery

Proxy
Container element.

The elements nested in this section configure this virtual host as an edge server that can forward connection requests
from applications running on one remote server to another remote server.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

185

Note: Whenever a virtual host is configured as an edge server, it behaves locally as a remote server.

If this virtual host is configured to run in remote mode and you want to configure the properties of an outgoing SSL
connection to an upstream server, the SSL connection to upstream servers will use the default configuration
specified in the SSL section of the Server.xml file.

For more information on this section of the Server.xml file, see SSL.

Contained elements

Mode, Anonymous, CacheDir, LocalAddress, RouteTable, EdgeAutoDiscovery, SSL, AggregateMessages

ResourceLimits
Container element.

The elements in this section specify the maximum resource limits for this virtual host.

Contained elements

MaxConnections, MaxEdgeConnections, MaxAppInstances, MaxStreams, MaxSharedObjects, AppInstanceGC,

RouteEntry
Instructs the edge server to forward the connection request to one server’s IP address and port number [host:port]
to a different IP address and port number.

Edge servers are configured with the RouteEntry element to direct connections to another destination. The
RouteTable element contains the RouteEntry elements that control where the edge server reroutes requests.

You can also add the protocol attribute to an individual RouteEntry element to specify how the edge server
reroutes requests. If no protocol is specified, however, Flash Media Server applies the protocol specified in the
RouteTable element. Implicit proxies hide the routing information from the clients.

The connection syntax for this element is flexible, as demonstrated in the following examples.

Examples

<Proxy>
<RouteTable protocol="">
<RouteEntry>foo:1935;bar:80</RouteEntry>
</RouteTable>

</Proxy>

This example shows how you can configure the edge to route all connections to the host foo to the host bar.

<RouteEntry>*:*;foo:1935</RouteEntry>

Flash Media Server allows the use of the wildcard character * to replace host and port.The example shows how to
route connections destined for any host on any port to port 1935 on the host foo.

<RouteEntry>*:*;*:1936</RouteEntry>

The example instructs Flash Media Server to route connections to any host on any port to the specified host on port
1936. For example, if you were to connect to foo:1935, the connection would be routed to foo:1936.

<RouteEntry>*:*;*:80</RouteEntry>

The example instructs Flash Media Server to use the values for host and port on the left side as the values for host
and port on the right side, and to route connections destined for any host on any port to the same host on port 80.

<RouteEntry>foo:80;null</RouteEntry>

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

186

The example instructs Flash Media Server to route a host:port combination to null. Its effect is to reject all connec-
tions destined for foo:80.

See also

RouteTable

RouteTable
Container element.

<RouteTable protocol="rtmp">

or

<RouteTable protocol="rtmps">

The RouteEntry elements nested under the RouteTable element specify the routing information for the edge
server. Administrators use these elements to route connections to the desired destination. The RouteTable element
can be left empty or it can contain one or more RouteEntry elements.

The protocol attribute specifies the protocol to use for the outgoing connection. The attribute is set to "" (an empty
string), rtmp for a nonsecure connection, or rtmps for a secure connection.

• Specifying "" (an empty string) means preserving the security status of the incoming connection.

• If the incoming connection was secure, then the outgoing connection will also be secure.

• If the incoming connection was nonsecure, the outgoing connection will be nonsecure.

• Specifying rtmp instructs the edge to use a nonsecure outgoing connection, even if the incoming connection was
secure.

• Specifying rtmps instructs the edge to use a secure outgoing connection, even if the incoming connection was
nonsecure.

You can override the security status for a connection mapping by specifying a protocol attribute in a RouteEntry
element. By default, Flash Media Server applies the protocol configured in the RouteTable list unless the mapping
for a particular RouteEntry element overrides it.

Contained element

RouteEntry

SSL
Container element.

If a virtual host is running in remote mode as an edge server and you want to configure the properties of an outgoing
SSL connection to an upstream server, then you must enable this section and configure its SSL elements appropri-
ately.

When Flash Media Server acts as a client to make an outgoing SSL connection, the following sequence of events takes
place:

• The SSL elements in the Vhost.xml file are evaluated first.

• If the SSL elements in the Vhost.xml file override the SSL elements in the Server.xml file, Flash Media Server
uses the SSL elements in the Vhost.xml file to configure the connection.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

187

• If the SSL elements in the Vhost.xml file match the SSL elements in the Server.xml file, Flash Media Server uses
the default values for SSL in the Server.xml file to configure the connection.

• If the SSL elements in an edge’s Vhost.xml file are not present, Flash Media Server uses the default values
specified in the SSL section of Server.xml to configure the SSL connection to upstream servers.

Note: When Flash Media Server is running in local mode as an origin server, the SSL information in the vhost.xml file
is not evaluated.

You can also override the configuration for outgoing SSL connections for an individual virtual host in Vhost.xml by
copying the SSL elements in Server.xml to the corresponding SSL section in the Vhost.xml file.

For more information on the SSL elements in Server.xml, see SSL.

Streams
Specifies the virtual directory mapping for recorded streams. The Streams element enables you to specify a virtual
directory for stored stream resources used by more than one application. By using a virtual directory, you specify a
relative path that points to a shared directory that multiple applications can access.

You can specify multiple virtual directory mappings for streams by adding additional Streams elements—one for
each virtual directory mapping.

Examples

<Streams>foo;c:\data</Streams>

This example maps all streams whose names begin with foo/ to the physical directory c:\data. The stream named
foo/bar would map to the physical file c:\data\bar.flv.

If there is a stream named foo/bar/x, then Flash Media Server first tries to find a virtual directory mapping for
foo/bar. If there is no virtual directory for foo/bar, Flash Media Server then checks for a virtual directory mapping
for foo. Since a virtual directory mapping does exist for foo, the stream foo.bar maps to the file c:\data\bar\x.flv.

<Streams>common;C:\FlashMediaServer\myApplications\shared/resources\</Streams>

If the virtual directory you specify does not end with a backslash, one is added by the server.

Any application that refers to a stream whose path begins with common/ will access the item in C:\FlashMedi-
aServer\myApplications\shared\resources, regardless of the application’s own directory structure. If the application
VideoConference refers to an item common/video/recorded/June5 and the application Collaboration refers to
common/videorecorded/June5, they both point to the same item
C:\FlashMediaServer\myApplications\shared\resources\video\recorded\June5\.

See also

VirtualDirectory

VirtualDirectory
Specifies virtual directory mappings for resources such as recorded streams.

Virtual directories let you share resources among applications. When the beginning portion of a resource’s URI
matches a virtual directory, Flash Media Server serves the resource from the physical directory. For detailed infor-
mation on mapping virtual directories, see Mapping virtual directories to physical directories.

You can use the VirtualDirectory element in conjunction with the VirtualKeys element to serve content based
on Flash Player version information. For more information, see VirtualKeys.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

188

Note: If you are mapping a virtual directory to a drive on another computer, make sure that the computer running Flash
Media Server has the right permissions to access the other computer. For more information, see Mapping directories to
network drives.

Example

For example, using the following VirtualDirectory XML, if a client called NetStream.play("vod/myVideo"),
the server would play the file d:\sharedStreams\myVideo.flv:

<VirtualDirectory>
<Streams>vod;d:\sharedStreams</Streams>

</VirtualDirectory>

Contained element

Streams

See also

VirtualKeys

VirtualHost
Root element of the Vhost.xml file.

This element contains all the configuration elements for the Vhost.xml file.

VirtualKeys
Lets you map Flash Player versions to keys. The keys are used in the VirtualDirectory element to map URLs to
physical locations on a server. Use these elements to deliver streams to clients based on Flash Player version. For
more information, see VirtualDirectory.

Example

When Flash Player connects to Flash Media Server, it sends the server a string containing its platform and version
information. You can add Key elements that map the Flash Player information to keys. The keys can be any alpha-
numeric value. In the following example, the keys are A and B:

<VirtualKeys>
<Key from="WIN 8,0,0,0" to="WIN 9,0,45,0">A</Key>
<Key from="WIN 6,0,0,0" to="WIN 7,9,9,9">B</Key>
<Key from="MAC 8,0,0,0" to="MAC 9,0,45,0">A</Key>
<Key from="MAC 6,0,0,0" to="MAC 7,9,9,9">B</Key>

</VirtualKeys>

In the VirtualDirectory element, you map virtual directories used in URLs to physical directories containing
streams. In the following example, if a client with key A requests a stream with the URL
NetStream.play("vod/someMovie"), it is served the stream c:\on2\someMovie.flv. If a client with key B requests
a stream with the URL NetStream.play("vod/someMovie"), it is served the stream c:\sorenson\someMovie.flv.

<VirtualDirectory>
<Streams key="A">vod;c:\on2</Streams>
<Streams key="B">vod;c:\sorenson</Streams>

</VirtualDirectory>

Note: You can also set these values in a server-side script. For more information, see the Client.virtualKey and
Stream.setVirtualPath() entries in the Server-Side ActionScript Language Reference.

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

189

See also

VirtualDirectory

WaitTime
Specifies length to wait in milliseconds for edge autodiscovery. The number must be long enough to establish a TCP
connection, perform a UDP broadcast, collect the UDP responses, and return an XML response. Do not set this
number too low.

Example

<WaitTime>1000</WaitTime>

See also

Enabled, AllowOverride

190

Chapter 9: Diagnostic Log Messages

Message IDs in diagnostic logs
This section contains the IDs of messages that appear in the diagnostic log files (master.xx.log, edge.xx.log,
core.xx.log, admin.xx.log, and httpcache.xx.log), which record information about Flash Media Server operations.
Message IDs can be useful for administrators who want to write error-handling scripts. For status codes related to
applications, instances, or users that you can use for debugging, see Access logs and Application logs.

Message ID Description

1000 Received termination signal; server shutdown in progress.

1001 Received interrupt signal; server shutdown in progress.

1002 Server initialization failed; service will be stopped.

1003 Error during shutdown process; process will be terminated.

1004 Reinitializing server.

1005 Failed to start the following listeners for adaptor %1$S: %2$S.

1006 Failed to stop %1$S listeners for adaptor %2$S.

1007 Failed to create thread (%1$S).

1008 Asynchronous I/O operation failed (%1$S: %2$S).

1009 Service Control Manager failed (%1$S: %2$S).

1010 Service Control Manager failed (%1$S: %2$S).

1011 Server starting...

1012 Server stopped %1$S.

1013 Failed to create listener for adaptor %1$S, IP %2$S, port %3$S: %4$S.

1014 Command name not found in the message.

1015 Method not found (%1$S).

1016 Failed to execute method (%1$S).

1017 Failed to stop virtual host (%1$S).

1018 The call method failed, invalid parameters: call(methodName[, resultObj, p1, pn]).

1019 Dropping application (%1$S) message. Clients not allowed to broadcast message.

1020 Response object not found (%1$S).

1021 Missing unlock for shared object %1$S, lock count %2$S.

1022 Nested lock for shared object %1$S, lock count %2$S.

1023 Unlock called without matching lock for shared object %1$S.

1024 Invalid application; rejecting message (%1$S).

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

191

1025 Ignoring message from client during authentication.

1026 Connection to %1$S lost.

1027 Unknown %1$S command issued for stream %2$S (application %3$S).

1028 Exception while processing message.

1029 Bad network data; terminating connection: %1$S.

1030 Illegal subscriber: %1$S cannot subscribe to %2$S.

1031 Failed to start virtual host (%1$S).

1032 Failed to open configuration file: %1$S.

1033 Parse error at line %1$S: %2$S.

1034 Connect failed (%1$S, %2$S): %3$S.

1035 Invalid proxy object; connection may be lost (%1$S).

1036 Connect from host (%1$S) not allowed.

1037 No adaptors defined.

1038 Adaptor already defined with the name %1$S.

1039 Rejecting connection from %1$S to %2$S.

1040 Failed to create administrator: %1$S.

1041 Failed to remove administrator: %1$S.

1042 Failed to change password: %1$S.

1043 Resource limit violation. Unable to create stream: %1$S.

1044 Resource limit violation. Unable to create shared object: %1$S.

1045 Script execution is taking too long.

1046 Reserved property (%1$S).

1047 Admin request received from an invalid Administration Server.

1048 Administrator login failed for user %1$S.

1049 Failed to start server.

1050 Write access denied for shared object %1$S.

1051 Read access denied for shared object %1$S.

1052 Write access denied for stream %1$S.

1053 Read access denied for stream %1$S.

1054 Virtual host %1$S is not available.

1055 Invalid parameters to %1$S method.

1056 Alive.

1057 NetConnection.Call.Failed

Message ID Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

192

1058 Invalid application name (%1$S).

1059 Invalid user ID (%1$S).

1060 NetConnection.Admin.CommandFailed

1061 Invalid parameters to %1$S method.

1062 Failed to unload application %1$S.

1063 Failed to load application %1$S.

1064 %1$S applications unloaded.

1065 Admin user requires valid user name and password.

1066 Invalid virtual host alias : %1$S.

1067 Error registering class: name mismatch (%1$S, %2$S).

1068 Connection rejected: maximum user limit reached for application instance %1$S.

1069 (%2$S, %3$S) : Failed to load application instance %1$S.

1070 (%2$S, %3$S) : Connection rejected to application instance %1$S. Client already connected to an application.

1071 Illegal access property (%1$S).

1072 %1$S is now published.

1073 %1$S is now unpublished.

1074 Stopped recording %1$S.

1075 Stream %1$S has been idling for %2$S second(s).

1076 Playing and resetting %1$S.

1077 Pausing %1$S.

1078 Unpausing %1$S.

1079 Started playing %1$S.

1080 Stopped playing %1$S.

1081 Recording %1$S.

1082 Failed to record %1$S.

1083 New NetStream created (stream ID: %1$S).

1084 NetStream deleted (stream ID: %1$S).

1085 Publishing %1$S.

1086 Failed to publish %1$S.

1087 Failed to restart virtual host (%1$S).

1088 Connection to Flash Media Server has been disconnected.

1089 Failed to play (stream ID: %1$S).

1090 Failed to play %1$S (stream ID: %2$S).

Message ID Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

193

1091 Play stop failed, stream ID: %1$S.

1092 Audio receiving enabled (stream ID: %1$S).

1093 Audio receiving disabled (stream ID: %1$S).

1094 Failed to enable audio receiving (stream ID: %1$S).

1095 Failed to stop playing (stream ID: %1$S).

1096 Video receiving enabled (stream ID: %1$S).

1097 Video receiving disabled (stream ID: %1$S).

1098 Set video fps to %1$S (stream ID: %2$S).

1099 Failed to receive video (stream ID: %1$S).

1100 Seeking %1$S (stream ID: %2$S).

1101 Failed to seek (stream ID: %1$S).

1102 Failed to seek %1$S (stream ID: %2$S).

1103 Invalid schedule event format (%1$S).

1104 Invalid method name (%1$S).

1105 (%2$S, %3$S): Invalid application name (%1$S).

1106 Connection succeeded.

1107 Connection failed.

1108 Invalid shared object (%1$S).

1109 Unknown exception caught in %1$S.

1110 Invalid stream name (%1$S).

1111 Server started (%1$S).

1112 JavaScript runtime is out of memory; server shutting down instance (Adaptor: %1$S, VHost: %2$S, App: %3$S).
Check the JavaScript runtime size for this application in the configuration file.

1113 JavaScript engine runtime is low on free memory. Take action.

1114 Failed to start listeners for adaptor %1$S.

1115 Configuration error for adaptor %1$S: IP %2$S and port %3$S are already in use.

1116 Failed to create adaptor: %1$S.

1117 Failed to play %1$S; stream not found.

1118 Insufficient admin privileges to perform %1$S command.

1119 Failed to initialize listeners for adaptor %1$. Flash Media Server is already running or other processes are using
the same ports.

1120 Configuration file not found: %1$S

1121 Invalid configuration file: %1$S

1122 Server aborted.

Message ID Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

194

1123 Invalid NetStream ID (%1$S).

1124 Failed to open shared object file (%1$S) for write.

1125 Failed to open shared object file (%1$S) for read.

1126 Failed to flush shared object (%1$S).

1127 Failed to initialize shared object from persistent store (%1$S).

1128 Invalid shared object file (%1$S).

1129 Failed to play %1$S; index file not found or mismatch.

1130 (%2$S, %3$S): Application (%1$S) is not defined.

1131 (%2$S, %3$S): Resource limit violation. Unable to load new application: %1$S.

1132 (%2$S, %3$S): Resource limit violation. Unable to create new application instance: %1$S.

1133 (%2$S, %3$S): Resource limit violation. Rejecting connection to: %1$S.

1134 Failed to load admin application.

1135 Preload application aborted.

1136 (%2$S, %3$S): Application (%1$S) is currently offline.

1137 Admin command setApplicationState failed for %1$S.

1138 Command successful.

1139 Script is taking too long to process the event. Shutting down instance: %1$S.

1140 NetConnection.Call.Success

1141 Unable to locate server configuration file during startup.

1142 Unable to locate script file: %1$S.

1143 NetConnection.Call.AccessDenied

1144 NetConnection.Call.BadValue

1145 Publish %1$S failed, invalid arguments.

1146 Pause %1$S failed, invalid arguments.

1147 Unable to create directory %1$S.

1148 Server shutdown failed.

1149 Invalid admin command: %1$S.

1150 Beta expired.

1151 Invalid object name (stream ID: %1$S).

1152 Breaking potential deadlock, shared object(%1$S) lock reset to unlocked.

1153 Potential deadlock, shared object (%1$S) has been locked for %2$S sec.

1154 Invalid license key: %1$S

1155 License key specified does not allow multiple adaptor support.

Message ID Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

195

1156 License key specified does not allow multiple virtual host support.

1157 (%2$S, %3$S/%1$S): Current server bandwidth usage exceeds license limit set. Rejecting connection.

1158 (%2$S, %3$S/%1$S): Current virtual host bandwidth usage exceeds max limit set. Rejecting connection.

1159 Multiprocessor support available only in Enterprise Edition.

1160 Trial run expired. Server shutting down.

1161 License key has expired.

1162 Invalid shared object name (%1$S).

1163 Failed to record %1$S, no space left on device.

1164 Unknown exception occurred. Instance will be unloaded: %1$S.

1165 Failed login attempt from %1$S at %2$S.

1166 Attempt to reconnect to Flash Media Server.

1167 Failed to remove application: %1$S.

1168 Exception while processing message: %1$S.

1169 Failed to execute admin command: %1$S.

1170 Unloaded application instance %1$S.

1171 System memory load (%1$S) is high.

1172 System memory load (%1$S) is now below the maximum threshold.

1173 Generic message code.

1174 Listener started (%1$S): %2$S.

1175 Restarting listener (%1$S): %2$S.

1176 Out of memory: %1$S.

1177 Adaptor (%1$S) has an SSL configuration error on port %2$S.

1178 Error from %1$S:%2$S.

1179 Warning from %1$S:%2$S.

1180 Info from %1$S:%2$S.

1181 Exception caught in %1$S while processing streaming data inside %2$S.

1182 (%2$S, %3$S): Max connections allowed exceeds license limit. Rejecting connection to: %1$S.

1183 An internal version control error has occurred.

1184 Invalid cryptographic accelerator: %1$S.

1185 Failed to initialize cryptographic accelerator: %1$S.

1186 Failed to seed the pseudorandom number generator.

1187 Application directory does not exist: %1$S

1188 Using default application directory: %1$S

Message ID Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

196

1189 Application instance is not loaded: %1$S

1190 Error: command message sent before client connection has been accepted.

1191 Failed to play %1$S; adaptor not found: %2$S.

1192 Invalid value set for configuration key: %1$S = %2$S, using %3$S.

1193 Pending queue size limit %1$S reached. Rejecting connection request Host: %2$S:%3$S.

1194 Client to server bandwidth limit exceeded. [Virtual host (%1$S), Max Allowed %2$S, Current %3$S]

1195 Server to client bandwidth limit exceeded. [Virtual host (%1$S), Max Allowed %2$S, Current %3$S]

1196 Adaptor (%1$S) does not exist.

1197 Virtual host (%1$S) does not exist.

1198 Message queue is too large. Server memory usage too high. Disconnecting client.

1199 Duplicate license key: %1$S

1200 Expired license key: %1$S

1201 No primary license key found. Switching to Developer Edition.

1202 Commercial and Educational licenses cannot be mixed. Switching to Developer Edition.

1203 Personal and Professional licenses cannot be mixed. Switching to Developer Edition.

1204 NFR licences cannot be mixed with any other kind. Switching to Developer Edition.

1205 OEM licences cannot be mixed with any other kind. Switching to Developer Edition.

1206 Too many trial licenses detected. Switching to Developer Edition.

1207 Shared object %1$S has changed and is not being saved, as auto commit is set to false. Current version %2$S,
Last saved version %3$S.

1208 %1$S failed. Invalid argument %2$S.

1209 File operation %1$S failed. %2$S

1210 File operation %1$S failed. File is in closed state (%2$S).

1211 File operation %1$S failed. Object is not a file (%2$S).

1212 File object creation failed (%1$S).

1213 Connection rejected by server. Reason: %1$S.

1214 Invalid substitution variable: %1$S

1215 Resetting service failure action from %1$S to %2$S.

1216 Administrator (%1$S) already exists.

1217 Failed to open log file. Log aborted.

1218 Failed to play stream %1$S: Recorded mode not supported.

1219 Missing arguments to %1$S method.

1220 Invalid admin stream: %1$S .

1221 Core (%1$S) started, arguments: %2$S.

Message ID Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

197

1222 Failed to start core: %1$S %2$S.

1223 Core (%1$S) is no longer active.

1224 Edge (%1$S) started, arguments: %2$S.

1225 Failed to start edge: %1$S %2$S.

1226 Edge (%1$S) is no longer active.

1227 Shared memory heap (%1$S) has exceeded 90 usage. Consider increasing the heap size to prevent future
memory allocation failures.

1228 Failed to create process mutex.

1229 Process (%1$S): shared memory (%2$S) init failed.

1230 Process (%1$S): failed to map view of shared memory (%2$S).

1231 Core (%1$S) connected to admin.

1132 Core (%1$S) failed to connect to admin.

1233 Core (%1$S) disconnecting from admin.

1234 Core (%1$S) connection to admin accepted.

1235 Core (%1$S) connection to admin failed.

1236 Core (%1$S) received close command from admin.

1237 Starting admin app on core (%1$S).

1238 Core (%1$S) connecting to admin.

1239 Core (%1$S): Failed to initiate connection to admin.

1240 Core (%1$S) shutdown failed.

1241 Connection to admin received.

1242 Core (%1$S) disconnected: %2$S.

1243 Connection from core %1$S received.

1244 Connection from core %1$S accepted.

1245 Failed to send connect response to core %1$S.

1246 Core (%1$S) sending register command to edge.

1247 Core (%1$S) disconnected from edge.

1248 Core (%1$S) failed to establish proxy to edge.

1249 Core (%1$S) socket migration failed.

1250 Edge disconnected from core (%1$S).

1251 Proxy to core (%1$S) failed.

1252 Registering core (%1$S).

1253 Socket migration to core (%1$S) failed.

1254 Recovering edge %1$S with %2$S failure[s] after %3$S seconds!

Message ID Description

ADOBE FLASH MEDIA SERVER
Configuration and Administration Guide

198

1255 Edge (%1$S) %2$S experienced %3$S failure[s]!

1256 Core (%1$S) %2$S experienced %3$S failure[s]!

1257 Core (%1$S) %2$S is not responding and is being restarted!

1258 Core (%1$S) is no longer active; create a new one.

1259 Recovering core %1$S with %2$S failure[s] after %3$S seconds!

1260 Core (%1$S) did not shut down as expected. Killing core now.

1261 Command (%1$S) timed out.

1262 OpenProcess(PROCESS_TERMINATE) failed with %1$S.

1263 OpenProcess(PROCESS_QUERY_INFORMATION) failed for pid (%1$S) with %2$S.

1373 SWF verification failed, disconnecting client.

1374 SWF verification timeout, disconnecting client.

1375 SWF verification unsupported by client, disconnecting client.

Message ID Description

199

Index

A
access logs 52
Adaptor.xml file 76–89

description of tags 76–89
file structure 76
summary of tags 76–77

Adaptor.xml tags
Adaptor 77
Allow 78
Deny 78
Enable 78
EnableAltVhost 79
HostPort 79
HostPortList 80
HTTPIdent 80
HTTPIdent2 81
HTTPNull 81
HTTPTunnel 82
HTTPUserInfo 82
IdleAckInterval 82, 83
IdlePostInterval 82
MaxFailures 83
MaxSize 83
MaxUnprocessedChars 114
MaxWriteDelay 83
MimeType 84
NeedClose 84
NodeID 84
Order 85
Path 85
RecoveryTime 85
Redirect 85
ResourceLimits 86
RTMP 86
RTMPE 86
SetCookie 86
SSL 87
SSLCipherSuite 88
SSLPassPhrase 88
SSLServerCtx 88
SSLSessionTimeout 89
UpdateInterval 89
WriteBufferSize 89

adaptors

about 8
configuring 76
directory structure 9

administration APIs
about 70
allowing use of 28
calling over HTTP 71
calling over RTMP 72
HTTP parameters 71
methods for administration 75
methods for monitoring server 73
methods for server

configuration 75
permissions 70
sample application 72

Administration Console
about 36
accessing help 38
application log 40
connecting to 36
debug connection 28
refresh rate 37
view applications 38
view server performance 47

Administration Server
administrators 45
APIs 36
connecting to 36
default port 36

administrators
defining in Administration

Console 45
managing 45

APIs
ActionScript 2.0 1
ActionScript 3.0 1
administration 70
server-side 1

application instances
about 8
log messages 40
performance 43
reloading 39
view in Administration Console 39

application logs 57

Application object, defining 29
Application.xml file 89–128

description of tags 89–128
file structure 90
summary of tags 90–94

Application.xml tags
Access 94, 124
AccumulatedFrames 95
AggregateMessages (Client) 95
AggregateMessages (Queue) 95
Allow 95
AllowHTTPTunnel 96
Application 96
Audio 96
AutoCommit 97
Bandwidth 98
BandwidthCap 98
BandwidthDetection 98
Bits 99
BufferRatio 99
Cache 99
CachePrefix 100–101
CacheUpdateInterval 101
Client 101
ClientToServer (Bandwidth) 101
ClientToServer

(BandwidthCap) 101
CombineSamples 102
Connections 102
DataSize 102
Debug 102
Distribute 102
Duration 103
EnhancedSeek 104
Exception 104
FileObject 104
FolderAccess 105
HiCPU 105
Host 105
HTTP 105
HTTP1_0 105
HTTPTunnel 106
IdleAckInterval 106
IdlePostInterval 107
Interface 107

INDEX 200

Interval 107
JSEngine 107
KeyFrameInterval 108
LifeTime 109
Live (MsgQueue) 109
Live (StreamManager) 109
LoadOnStartup 109
LockTimeout 109
LoCPU 110
Max 110
MaxAppIdleTime 110
MaxAudioLatency 110
MaxBufferRetries 111
MaxCores 111
MaxFailures 111
MaxGCSkipCount 111
MaxMessagesLosslessvideo 112
MaxPendingDebugConnections 1

12
MaxQueueDelay 112
MaxQueueSize 113
MaxRate 113
MaxSamples 113
MaxSize 113
MaxStreamsBeforeGC 113
MaxTime 114
MaxTimeOut (JSEngine) 114
MaxWait 115
MimeType 115
MinBufferTime (Live) 115
MinBufferTime (Recorded) 115
MinGoodVersion 115
MsgQue 116
NetConnection 116
NotifyAudioStop 116
ObjectEncoding 116
OutChunkSize 117
OverridePublisher 117
Password 117
Port 117
Process 118
Proxy 118
Queue 119
Recorded 119
RecoveryTime 119
Redirect 119
ResyncDepth 119
Reuse 120
RollOver 120

RuntimeSize 120
Scope 121
ScriptLibPath 121
SendDuplicateOnMetaData 121
SendDuplicateStart 122
SendSilence 122
Server 122
ServerToClient (Bandwidth) 122
ServerToClient

(BandwidthCap) 123
SharedObjManager 123
StreamManager 123
Subscribers 123
SWFFolder 124
ThrottleBoundaryRequest 125
ThrottleDisplayInterval 125
ThrottleLoads 125
TTL 126
Tunnel 125
Type 126
UnrestrictedAuth 126
UpdateInterval 126
UserAgent 126
UserAgentExceptions 127
Username 127
Verbose 127
VirtualDirectory 128
WriteBuffSize 128
XMLSocket 128

applications
about 8

audio samples, combining 15

B
backing up log files 51
bandwidth detection, native 30

C
clients

closing idle connections of 16
limiting connections from 16
view active 41

clusters
and load balancers 3
deploying 3

configuration files 76–189
Adaptor.xml 76–89
Application.xml 89–128
directory structure 8

editing 11
Logger.xml 129–138
Server.xml 138–172
symbols in 12
Users.xml 172–176
Vhost.xml 176–189

connections
closing idle 16
limiting 16, 155

content storage
about 31
application files 31
configuring 31
mapping directories 32
virtual directories 33

core processes
assigning 18
configuring 18
distributing 19
maximum number of 20
rolling over 20

D
debug connection 28
diagnostic logs 58

E
edge servers

chain 7
configuring 4
connecting to 6
deploying 4
file cache (on Linux) 68
file cache (Windows) 67

Errors, in video files 66
Event Viewer (Windows) 62

F
FLV errors 66
FLV files, checking 64
FLVCheck tool 64
FMSCheck tool 62
fmsmgr utility 68

I
IPv6

configuring 28
disabling 160
enabling 160

INDEX 201

on Linux 81
special considerations on Linux 81

L
licenses

adding 49
viewing 49

Linux
and IPv6 81
using with Flash Media Server 68

log files
and IPv6 51
application 51
backing up 51
diagnostic 51
managing 51
messages 190
rotating 51
server
server access 51

Logger.xml file 129–138
configuring 60
description of tags 129–138
file structure 129
summary of tags 129–130

Logger.xml tags
Access 130
Application 130
AuthEvent 130
AuthMessage 130
Delimiter 130
Diagnostic 131
Directory 131
DisplayFieldHeader 131
EscapeFields 131
Events 132–133
Fields 133–135
FileIO 135
FileName 135
History 136
HostPort 136
Logger 136
LogServer 136
MaxSize 136
QuoteFields 137
Rename 137
Rotation 137
Schedule 137
ServerID 138

Time 138
logging

configuration files 60
logs. See log files

M
mapping virtual directories 33
messages

aggregating 15
in diagnostic logs 190
viewing log messages for

applications 40
MP4 errors 66

N
native bandwidth detection 30

O
object properties, configurable 29

P
performance

improving 14
monitoring server 47

permissions
administration APIs 70
for administrators 172

R
refresh rate 37
rotating log files 51

S
scripts. See server-side scripts
security

and RTMPE 23
and SSL 24–28
configuring features 21
limiting domain access to 23
SWF verification 21

serial keys
adding 49
See also licenses

server
administrative methods 75
checking health of 62
checking status of 62
hierarchy 8
log file 49

managing, on Linux 68
methods for monitoring 73
performance 47
querying 73
starting 61
stopping 61
testing 62
viewing events 62

server processes, configuring 18
server.xml

configuring 60
Server.xml file 138–172

summary of tags 138–142
Server.xml tags

Access 142
ACCP 142
ActiveProfile 143
Admin 143
AdminElem 143
AdminServer 143
Allow 143
Application 144
ApplicationGC 144
AuthCloseIdleClients 144
AuthEvent 144
AuthMessage 144, 147
Cache 145
CheckInterval 145
Connector 145
Core 146
CoreExitDelay 146
CoreGC 146
CoreTimeOut 146
CPUMonitor 146
Deny 147
Diagnostic 147
ECCP 147
Edge 147
EdgeCore 147
Enable 148
FileCheckInterval 148
FileIO 148
FLVCache 148
FLVCacheSize 149
FreeMemRatio 149
FreeRatio 149
GCInterval 149
GID 150
GlobalQueue 150

INDEX 202

GlobalRatio 150
HandleCache 150
HeapSize 150
HostPort 151
HTTP 151
IdleTime 152
IPCQueues 152
LargeMemPool 152
LicenseInfo 152
LicenseInfoEx 152
LocalHost 153
Logging 153
Mask 153
Master 154
MaxAge 154
MaxCacheSize 154
MaxCacheUnits 154
MaxConnectionQueueSize 154
MaxConnectionRate 155
MaxConnectionThreads 155
MaxIdleTime 155
MaxIOThreads 156
MaxKeyframeCacheSize 156
MaxNumberOfMessages 157
MaxQueueSize 157
MaxSize (FLVCache) 157
MaxSize (HandleCache) 157
MaxSize (RecBuffer) 158
MaxTimestampSkew 158
MaxUnitSize 158
MessageCache 158
MinConnectionThreads 159
MinGoodVersion 159
MinIOThreads 159
MinPoolGC 160
NetworkingIPv6 160
NumCRThreads 160
Order 160
Process (AdminServer) 161
Process (Server) 161
Protocol 161
PublicIP 161
RecBuffer 161
ResourceLimits 162
Root 162
RTMP (AdminServer) 162
RTMP (Connector) 162
RTMP (Protocol) 163
RTMPE 163

Scope 163
SegmentsPool 163
Server 163
ServerDomain 164
Services 164
SmallMemPool 164
SocketGC 164
SocketOverflowBuckets 165
SocketTableSize 165
SSL 166
SSLCACertificateFile 166
SSLCACertificatePath 166
SSLCipherSuite 166–168
SSLClientCtx 169
SSLRandomSeed 169
SSLSessionCacheGC 169
SSLVerifyCertificate 169
SSLVerifyDepth 169
SWFFolder 170
SWFVerification 170
TerminatingCharacters 170
ThreadPoolGC 170
Time 170
TrimSize 171
UID 171
UpdateAccessTimeInterval 171
UpdateInterval 171

server-side scripts
and configurable object

properties 29
reference for 1

setting storage directories 32
shared objects

default location of 32
setting location of 32
view active 43

SSL
certificates 24
configuring 24–28
tags in Adaptor.xml 24, 25
tags in Server.xml 26, 27
tags in VHost.xml 27

storage directories 32
storageDir element 32
streams

cache size 14
chunk size 14
chunk size for vod 15
view live 40

U
Users.xml file 172–176

description of tags 172–176
file structure 172
permissions for admin APIs 70
summary of tags 172

Users.xml tags
AdminServer 173
Allow (HTTP Commands) 173
Allow (User) 173
Deny (HTTPCommands) 173
Deny (User) 174
Enable 174
HTTPCommands 174
Order (HTTPCommands) 174
Order (User) 175
Password 175
Root 175
User 176
UserList 176

V
Vhost.xml file 176–189

file structure 176
summary of tags 176–177

Vhost.xml tags
AggregateMessages 178
Alias 178
AliasList 178
Allow 178
AllowOverride 179
Anonymous 179
AppInstanceGC 180
AppsDir 180
AutoCloseIdleClients 180
CacheDir 181
DNSSuffix 181
EdgeAutoDiscovery 182
Enabled 182
LocalAddress 182
MaxAggMsgSize 182
MaxAppInstances 183
MaxConnections 183
MaxEdgeConnections 183
MaxIdleTime 183
MaxSharedObjects 184
MaxStreams 184
Mode 184
Proxy 184

INDEX 203

ResourceLimits 185
RouteEntry 185
RouteTable 186
SSL 186
Streams 187
VirtualDirectory 187
VirtualKeys 188
WaitTime 189

video
checking F4V files 64
checking FLV files 64
checking H.264 files 64
FLVCheck tool 64

virtual directories 33
virtual hosts

about 8
connecting to 37
creating 10
directory structure 8

VirtualDirectory element 33

W
Windows Event Viewer 62

	Contents
	Chapter 1: Before you begin
	Overview of Flash Media Server
	About the documentation
	Support
	Third-party resources
	Typographical conventions

	Chapter 2: Deploying the server
	Deploying servers in a cluster
	Workflow for deploying servers in a cluster
	Clustering multiple servers behind a load balancer

	Deploying edge servers
	Workflow for deploying edge servers
	Configure edge servers
	Connect to an edge server

	Chapter 3: Configuring the server
	Configuring adaptors, virtual hosts, and applications
	Adaptors and virtual hosts
	Applications
	Configuration folder structure
	Add an adaptor
	Add a virtual host

	Working with configuration files
	Editing configuration files
	Using symbols in configuration files

	Configuring performance features
	Configure the recorded media cache
	Configure the size of stream chunks
	Configure the size of stream chunks for the vod service
	Send aggregate messages
	Combine audio samples
	Limit connection requests
	Close idle connections
	Configure how applications are assigned to server processes

	Configuring security features
	Restrict which domains can connect to a virtual host
	Verify SWF files
	Limit access to Flash Media Administration Server
	Disable RTMPE
	Configure SSL

	Performing general configuration tasks
	Allow Administration API methods to be called over HTTP
	Allow application debugging connections
	Configuring IPv6
	Defining Application object properties
	Configure or disable native bandwidth detection

	Configuring content storage
	About content storage
	Setting the location of application files
	Mapping directories to network drives
	Setting the location of recorded streams and shared objects
	Mapping virtual directories to physical directories

	Chapter 4: Using the Administration Console
	Connecting to the Administration Console
	About the Administration Console
	Connect to the Administration Console
	Change or pause the refresh rate
	Access Help

	Inspecting applications
	View applications
	Viewing log messages for an application
	Viewing active streams
	Viewing active clients
	Viewing active shared objects
	View performance information

	Managing administrators
	About administrator roles
	Add administrators
	Managing server administrators

	Managing the server
	Monitoring server performance
	Viewing server details
	Viewing connection details
	Viewing application details
	Viewing license files
	Add a serial key
	View the access log file

	Chapter 5: Monitoring and Managing Log Files
	Working with log files
	Managing log files
	Rotating and backing up log files
	Verifying IPv6 in log files

	Access logs
	Reading access logs
	Access events defined in access logs
	Fields in access logs
	Event status codes in access logs

	Application logs
	Application log file
	Fields in application logs

	Diagnostic logs
	Diagnostic log file
	Fields in diagnostic logs
	Status categories in diagnostic logs

	Configuration files for logging

	Chapter 6: Administering the server
	Start and stop the server
	Start and stop the server in Windows
	Start and stop the server in Linux

	Checking server status
	View server events in the Windows Event Viewer
	Check server health

	Checking video files
	Checking FLV files created or modified with third-party tools
	Checking other video files
	Check a video file with the FLVCheck tool
	FLVCheck errors
	FLVCheck warnings

	Clearing the edge server cache
	Deleting files from the edge server cache
	Manage the edge server cache in Windows
	Manage the edge server cache in Linux

	Managing the server on Linux

	Chapter 7: Using the Administration API
	Working with the Administration API
	About the Administration API
	Set permissions for Administration API method calls over HTTP
	Call an Administration API method over HTTP
	Constructing an HTTP request string
	Call Administration API methods over RTMP or RTMPE
	Create your first application

	Method summary
	Methods for monitoring the server
	Administrative methods
	Methods for configuring the server

	Chapter 8: XML configuration files reference
	Adaptor.xml file
	Adaptor
	Allow
	Deny
	Edge
	Enable
	EnableAltVhost
	HostPort
	HostPortList
	HTTPIdent
	HTTPIdent2
	HTTPNull
	HTTPTunnel
	HTTPUserInfo
	IdleAckInterval
	IdlePostInterval
	IdleTimeout
	MaxFailures
	MaxSize
	MaxWriteDelay
	MimeType
	NeedClose
	NodeID
	Order
	Path
	RecoveryTime
	Redirect
	ResourceLimits
	RTMP
	RTMPE
	SetCookie
	SSL
	SSLCertificateFile
	SSLCertificateKeyFile
	SSLCipherSuite
	SSLPassPhrase
	SSLServerCtx
	SSLSessionTimeout
	UpdateInterval
	WriteBufferSize

	Application.xml file
	Access
	AccumulatedIFrames
	AggregateMessages (Client)
	AggregateMessages (Queue)
	Allow
	AllowDebugDefault
	AllowHTTPTunnel
	Application
	Audio
	AutoCloseIdleClients
	AudioSampleAccess
	AutoCommit
	Bandwidth
	BandwidthCap
	BandwidthDetection
	Bits
	BufferRatio
	Cache
	CachePrefix
	CacheUpdateInterval
	Client
	ClientToServer (Bandwidth)
	ClientToServer (BandwidthCap)
	CombineSamples
	Connections
	DataSize
	Debug
	Distribute
	DuplicateDir
	Duration
	EnhancedSeek
	Exception
	FileObject
	FlushOnData
	FolderAccess
	HiCPU
	Host
	HTTP
	HTTP1_0
	HTTPTunnel
	IdleAckInterval
	IdlePostInterval
	Interface
	Interval
	JSEngine
	KeyFrameInterval
	LifeTime
	Live (StreamManager)
	Live (MsgQueue)
	LoadOnStartup
	LockTimeout
	LoCPU
	Max
	MaxAggMsgSize
	MaxAppIdleTime
	MaxAudioLatency
	MaxBufferRetries
	MaxCores
	MaxGCSkipCount
	MaxFailures
	MaxMessageSizeLosslessVideo
	MaxPendingDebugConnections
	MaxProperties
	MaxPropertySize
	MaxQueueDelay
	MaxQueueSize
	MaxRate
	MaxSamples
	MaxSize
	MaxStreamsBeforeGC
	MaxTime
	MaxTimeOut (Connections)
	MaxTimeOut (JSEngine)
	MaxUnprocessedChars
	MaxWait
	MimeType
	MinBufferTime (Live)
	MinBufferTime (Recorded)
	MinGoodVersion
	MsgQueue
	NetConnection
	NotifyAudioStop
	ObjectEncoding
	OutChunkSize
	OverridePublisher
	Password
	Port
	Prioritization
	Process
	Proxy
	PublishTimeout
	Queue
	Recorded
	RecoveryTime
	Redirect
	ResyncDepth
	Reuse
	RollOver
	RuntimeSize
	Scope
	ScriptLibPath
	SendDuplicateOnMetaData
	SendDuplicateStart
	SendSilence
	Server
	ServerToClient (Bandwidth)
	ServerToClient (BandwidthCap)
	SharedObjManager
	StorageDir
	StreamManager
	Subscribers
	SWFFolder
	SWFVerification
	ThrottleBoundaryRequest
	ThrottleDisplayInterval
	ThrottleLoads
	Tunnel
	TTL
	Type
	UnrestrictedAuth
	UpdateInterval
	UserAgent
	UserAgentExceptions
	Username
	Verbose
	VideoSampleAccess
	VirtualDirectory
	WriteBufferSize
	XMLSocket

	Logger.xml file
	Access
	Application
	AuthEvent
	AuthMessage
	Delimiter
	Diagnostic
	Directory
	DisplayFieldsHeader
	EscapeFields
	Events
	Fields
	FileIO
	FileName
	History
	HostPort
	Logger
	LogServer
	MaxSize
	QuoteFields
	Rename
	Rotation
	Schedule
	ServerID
	Time

	Server.xml file
	Access
	ACCP
	ActiveProfile
	Admin
	AdminElem
	AdminServer
	Allow
	Application
	ApplicationGC
	AuthEvent
	AuthMessage
	AutoCloseIdleClients
	Cache
	CheckInterval
	Connector
	Core
	CoreExitDelay
	CoreGC
	CoreTimeout
	CPUMonitor
	Deny
	Diagnostic
	ECCP
	Edge
	EdgeCore
	Enable
	FileCheckInterval
	FileIO
	FLVCache
	FLVCacheSize
	FreeMemRatio
	FreeRatio
	GCInterval
	GID
	GlobalQueue
	GlobalRatio
	HandleCache
	HeapSize
	HostPort
	HTTP
	IdleTime
	IPCQueues
	LargeMemPool
	LicenseInfo
	LicenseInfoEx
	LocalHost
	Logging
	Mask
	Master
	MaxAge
	MaxCacheSize
	MaxCacheUnits
	MaxConnectionQueueSize
	MaxConnectionRate
	MaxConnectionThreads
	MaxIdleTime
	MaxIOThreads
	MaxKeyframeCacheSize
	MaxNumberOfMessages
	MaxQueueSize
	MaxSize (FLVCache)
	MaxSize (HandleCache)
	MaxSize (RecBuffer)
	MaxTimestampSkew
	MaxUnitSize
	MessageCache
	MinConnectionThreads
	MinGoodVersion
	MinIOThreads
	MsgPoolGC
	NetworkingIPv6
	NumCRThreads
	Order
	Process (AdminServer)
	Process (Server)
	Protocol
	PublicIP
	RecBuffer
	ResourceLimits
	Root
	RTMP (AdminServer)
	RTMP (Connector)
	RTMP (Protocol)
	RTMPE
	Scope
	SegmentsPool
	Server
	ServerDomain
	Services
	SmallMemPool
	SocketGC
	SocketOverflowBuckets
	SocketRcvBuff
	SocketSndBuf
	SocketTableSize
	SSL
	SSLCACertificateFile
	SSLCACertificatePath
	SSLCipherSuite
	SSLClientCtx
	SSLRandomSeed
	SSLSessionCacheGC
	SSLVerifyCertificate
	SSLVerifyDepth
	SWFFolder
	SWFVerification
	TerminatingCharacters
	ThreadPoolGC
	Time
	TrimSize
	TTL
	UID
	UpdateAccessTimeInterval
	UpdateInterval
	UpdateInterval (Cache)

	Users.xml file
	AdminServer
	Allow (HTTPCommands)
	Allow (User)
	Deny (HTTPCommands)
	Deny (User)
	Enable
	HTTPCommands
	Order (HTTPCommands)
	Order (User)
	Password
	Root
	User
	UserList

	Vhost.xml file
	AggregateMessages
	Alias
	AliasList
	Allow
	AllowOverride
	Anonymous
	AppInstanceGC
	AppsDir
	AutoCloseIdleClients
	CacheDir
	DNSSuffix
	EdgeAutoDiscovery
	Enabled
	LocalAddress
	MaxAggMsgSize
	MaxAppInstances
	MaxConnections
	MaxEdgeConnections
	MaxIdleTime
	MaxSharedObjects
	MaxStreams
	Mode
	Proxy
	ResourceLimits
	RouteEntry
	RouteTable
	SSL
	Streams
	VirtualDirectory
	VirtualHost
	VirtualKeys
	WaitTime

	Chapter 9: Diagnostic Log Messages
	Message IDs in diagnostic logs

	Index

